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More than 5,000 FCEVs on California roadways

Numbers as of January 2019 Total

Fuel cell cars sold and leased 5899

Fuel cell buses in operation in California 25

Retail hydrogen stations open in California 39

By The Numbers

CaFCP Station Map

Clusters in big
cities

"Connectors" and
"destination"
stations across the
state

https://cafcp.org/by the numbers

Fuel Cell Revolution (July, 2018)
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As FCEV fueling stations serve higher capacity, liquid hydrogen delivery
and on-site storage is the likely technology

• For a similar vehicle/day capacity as gasoline,
liquid H2 tankers make sense

— Underground gasoline stations tanks hold on the

order of 10,000 gallons

— Liquid H2 tankers can hold up to approximately

4,000 kg

— Compressed tube trailers hold approximately

300 kg

— Lack of hydrogen pipelines where stations are
needed

• High purity hydrogen needed for FCEVs

• Higher energy density of liquid hydrogen over
compressed H2 makes it more economically
favorable for larger fueling stations

Linde standard hydrogen filling station with the cryo pump

Linde's cryo pump fueling station system

https://www.youtube.com/watch?v=Pjh639S2d

ek
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Current separation distances for liquid hydrogen systems are based
on consensus rather than a comprehensive scientific basis

Compressed H2 storage

• Previous work by this group led to
science-based, reduced, gaseous H2
separation distances

Liquid H2 storage

• Even with credits for insulation and fire-
rated barrier wall 75 ft. offset to building
intakes and parking make footprint large
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Sandia H2 Safety Codes and Standards research includes coordinated
activities that facilitate deployment of hydrogen technologies

H2 behavior R&D
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Develop and validate scientific
models to accurately predict hazards
and harm from liquid releases, flames
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QRA methods, tools R&D
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Develop integrated algorithms for
conducting QRA (Quantitative Risk
Assessment) for H 2 facilities and
vehicles

Apply QRA and behavior models
to real problems in infrastructure
and emerging technology

Enabling methods, data & tools for H 2 safety
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Realistic leaks are more likely to be from high aspect ratio cracks for
which limited data exist
• Buoyancy controlled slot flames studies have shown that flame length depends on heat release

rate (LF/W — 6'11) or Froude number (LF/W — Frn)

Momentum controlled flame study by Mogi & Horiguchi have reported that flame length
decreases with increasing aspect ratio.

Recent work by Gao et al. have reported higher non-dimensional flame length for slot flames
relative to releases from round nozzles

Objectives of the present study

Examine the reported observations for high aspect ratio nozzles at relevant cryogenic conditions

• Compare the flame characteristics to those of cryogenic hydrogen releases from round nozzle

For development of science-based safety codes and standards, it is important to identify the
worst-case scenario and use the worst-case as a conservative approach.
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We are releasing cryogenic hydrogen in the laboratory to study its
flame properties
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Flame length increases with hydrogen mass flow rate

• Visible flame images were captured by a
commercial Panasonic Lumix camera with an
exposure time of 200 ms

• Flame length : Distance from the nozzle exit along
the axis where the intensity drops to 10 % of the
maximum intensity level of that image.

• Visible flame length has a linear trend with mass
flow rate

• For a fixed mass flow rate, the flame length is
higher for colder jet releases

AAA AR 2

AR 4

AR 8

AAA AR 16

Es. AR 32

e** AR 64

*so Round
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Flame length is affected by release pressure and temperature

• Mass flow rate through the nozzle is governed by release pressure and temperature

• Flame length increases with release pressure at identical nozzle temperatures

• Aspect ratio does not have a large impact on flame length

2

WI

1.1 v

rvi
1.1

VI

1.,

Pk

411

41

u ..n.
0.1.

;.; ei, "
oe, u

0,,,,, rF"''''

" oev

0....
, vv. , .K7 r

1.1

!Z"

AAA AR 16

AR 32 a
11

3 41

1

1

+A,

412

444 AR 2 AR 3

AAA AR 16

14

14
101

14 14

41 II IV
r.1 .
14 i I
II 11 IV 1,
VI
14

14
11

1.4

1.1

1.1

_.14 ...
IA II IA 1,

,--•11`11.•`•11.11...M.11.1,•11`11.•."•11.11..11.11`..•....1.•"•11.•"•11.11'..M.IVI.E'll'IVE..11.11.•.•"11...1"1111.•"•11.1,•11.11...".11.•M1,11

VI II 10 1, 1,

in i 

la 

IA iv

il 

3 4

e (I
5

pe4

44104 AR 2

.f. AR 8

AAA AR 16
14
11

ift AR 32

tote AR 64

10

1.4
11

IV

IV

1.1

14.41

ta

.10

5

(liaaroj

,



WI Sandia National Laboratories ItFCHydrogen and Fuel Cells Program

Flame length is not affected by nozzle geometry

Mass flow rate through the nozzle is governed by release pressure and temperature

• Flame length increases with release pressure at identical nozzle temperatures

Aspect ratio does not have a large impact on flame length

• Round nozzle has a very similar flame height relative to slit nozzles
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Variation of flame length as a function of heat release rate

Previously developed correlations:
L„ = f (Q* = Q 

PooCpTc 0 ga02)

Governing Length Scale : Equivalent Nozzle Diameter (D)

• For momentum dominated flames, non-dimensional flame

length is independent of Q* (MaCaffrey, 1988)
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• Using effective diameter improves the variation

Deff = D(PNoz/Pc0)°.5

• Still large scatter of current data around 630 (Round
Nozzles) and 598 (Rectangular Nozzles)
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Jet Reynolds number provides a better fit to the flame length data

Previously developed correlation for hydrogen
flames from round nozzles:

LF = f [(40)112_\I 4 1 (Molkov & Saffers, 2013)

Taking into consideration the variation of
viscosity due to temperature leads to:

LF = f [D , Re]

Best fit equation which collapses all the data:
LF
= 2.8 Re

D
°.43

• Round A AR 16
1 AR 2 Ai AR 32

• AR 4 * AR 64

.0 AR 8 fit
67. 9 6. .1
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Radiative heat flux increases with mass flow rate

• Radiative power was measured by five wide-angle Medtherm Model 64P-1-22 Schmidt-
Boelter thermopile detectors, each with a 150° view angle

• For a fixed mass flow rate of hydrogen, the radiative heat flux is higher for colder jet releases.
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Radiative Fraction
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• Radiant fraction for H2 flames
lower than hydrocarbon flames

• Radiant fraction slightly higher
for non-circular cryogenic
releases

• Power law correlation fits all
data, considering noise on
measurements

• Power law results in radiant
fraction of zero for residence
time of zero
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Future work: Concentration measurements for cryogenic hydrogen releases

• Concentration and velocity decay rate
depends on nozzle geometry

Mapping the flammable envelope will
enable in understanding the physics
responsible for observed flame length
variation

• Planar Raman Imaging and PIV has been
set up to measure concentration and
velocity field

• Condensed, entrained moisture acts as
particles for stereo-PIV
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Summary

• Cryogenic under-expanded hydrogen jet flames have been investigated over a range of
temperature (38 — 295 K), pressure (2-6 barabs) , rectangular nozzles (aspect ratio 2 -64)
and round nozzle of identical cross sectional area

• Flames from the rectangular nozzles have similar flame lengths as round nozzles

• Aspect ratio does not have a large impact on flame length

• Hydrogen jet flame length (normalized by equivalent diameter) is strongly dependent
on jet Reynolds number

• For a fixed mass flow rate of hydrogen, the radiative heat flux is higher for colder jet
releases which can be attributed to lower choked velocity of the colder hydrogen
source which increases the flame residence time

• Radiant fraction for rectangular nozzles similar to round nozzles, and data for all fuels
(warm and cryogenic) can be collapsed onto a single correlation
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Thank you
NNW

broycho@sandia.gov
(925)294-6373
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Raman imaging and particle imaging velocimetry off of the
condensed moisture are used to measure all model parameters in 2D

Previous lab approach of Planar
Rayleigh imaging had signal
overwhelmed by Mie scattering off of
condensed entrained moisture in jet

• Filtered Rayleigh had insufficient Mie

scattering light suppression (OD:L-3)

• Raman scattering enables higher

optical density filters to remove
unwanted Mie scatter

— 10 nm FWHM bandpass filters at
wavelengths of interest

OD of 12 @ all wavelengths

OD of 18 @ 532 nm

Condensed, entrained moisture acts as
particles for stereo-PIV
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Independent model
parameters:
✓ T - temperature
✓ x - mole fraction
✓ v - velocity
✓ B - halfwidth (velocity,

concentration,
temperature)
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Heat flux measurements at cryogenic temperatures
NW

• Aspect ratio does not have a large impact on flame length

• Cryogenic temperatures increase mass flow through nozzles

• For an equivalent mass flux, heat flux increases at cryogenic temperatures

r> Variations in hazards due to temperature are important to understand for QRA of cryogenicsystems

A 2n
rri =. 0.28 g/s, T„„ = 222 K, Noz = 5 bar
m =0.29 g/s, Tn„ = 151 K, P„„ =4 bar

m = 0.30 vs, Tnnz = 50 K, Pnoz=2 bar

m =0 48 gis, Tnoz= 52 K. PDOI=4 ba
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