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Silicon Photonics in Harsh Environments

Silicon photonics Metal VEE!

> CMOS compatible (integration), high
bandwidth, low loss

. . . . . . Nitride
° Applications include optical communication

focal plane arrays (FPA’s) and RF photonics

Harsh environments
> Space (low earth orbit (LEO))

How do silicon waveguides of various
geometries perform in these

environments? Silicon Handle

Fully Etched Strip Waveguide Partially Etched Rib Waveguide
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3 1 Effects of Gamma Radiation on Si/SiO, Structure
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M ZEILER, RADIATION-HARD SILICON PHOTONICS FOR FUTURE HIGH ENERGY PHYSICS EXPERIMENTS, 2017
N. M. JOHNSON ET. AL., CHARACTERISTIC ELECTRONIC DEFECTS AT THE SI-SI02 INTERFACE, 1983
D. M. FLEETWOOD ET. AL., UNIFIED MODEL OF HOLE TRAPPING, 1/F NOISE, AND THERMALLY STIMULATED CURRENT IN MOS DEVICES, 2002
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5 1 Comparison With Previous Studies

Source | Type of Waveguide Waveguide Total Structure Effect of Loss Extraction
Radiation | Core Material Cladding Dose Radiation Method
Material on Loss
[1] X-ray Doped silicon Sio, 10 krad Waveguides of Decreased Cut-back
(~10'7 cm3) different propagation
lengths loss
[2] Gamma Amorphous Sio, 150 krad  Ring Resonator None Q-factor
silicon
[2] Gamma Amorphous Polymer 150 krad  Ring resonator Increased Q-factor
silicon propagation
loss
[3] Gamma Silicon Sio, 10 krad Bragg None Fabry-Perot
[3] Gamma Silicon Sio, 10 krad Ring Resonator None Q-factor
[4] Gamma Silicon Nitride  SiO, 10 Mrad Ring Resonator None Q-Factor
[5] Gamma Silicon Sio, 100 krad Arrayed Small Swept
waveguide increase in wavelength
structure propagation interferometry
loss

[1] M. ZEILER ET. AL., RADIATION-HARD SILICON PHOTONICS FOR FUTURE HIGH ENERGY PHYSICS EXPERIMENTS, 2017
[2] S. GRILLANDA ET. AL., GAMMA RADIATION EFFECTS ON SILICON PHOTONIC WAVEGUIDES, 2016
[3] Z. AHMED AT. AL., ASSESSING RADIATION HARDNESS OF SILICON PHOTONIC SENSORS, 2018
[4] Q. DU ET. AL., GAMMA RADIATION EFFECTS IN AMORPHOUS SILICON AND SILICON NITRIDE PHOTONIC DEVICES, 2017
[5] THIS WORK




6 I Arrayed Waveguide Structure for Loss Characterization

Arrayed waveguides

L=Ly+MXxAL

Input Output

Star couplers




7 1 Silicon Photonic Arrayed Waveguide Structure

M arrayed
waveguides of length
L = LO +m X AL

Input/output
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Serpentine waveguides allow for large path-
length differences in low footprint.




400 nm fully etched waveguide
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9 I Propagation Loss Extraction

400 nm fuliy etched wavegwde
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10 I Pre-Exposure Propagation Loss

Propagation Loss in Propagation Loss in
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* Scattering at rough sidewalls and free carrier absorption are sources of propagation
loss.

* Joss extracted at room temperature.
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Propagation Loss in
Fully Etched Waveguides
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Irradiated using °°Co source (~1 MeV) at 130 rad/s dose rate for a time such that

total absorbed dose 1s 100 krad.

Samples temperature maintained at room temperature.

Slight increase in propagation loss due to increased free carrier absorption.




12 I Recovery of Waveguide Performance Using Heat Treatment
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* Samples annealed at 200° C for two houts.

* Neutralization of radiation induced charge attributed to hydrogen passivating
dangling interface bonds and defects in SiO,."

* Reversal of performance degradation caused by induced radiation.

T. MAET. AL., IONIZING RADIATION EFFECTS IN MOS DEVICES AND CIRCUITS, 1989
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At 40 krad (dB/cm)

Viability of Silicon Photonics in Harsh Environments

Excess Propagation Loss in Silicon

Photonic Waveguides after 100 krad Dose
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* Increase in propagation loss, but minimal system impact.
* Induced radiation damage can be improved through annealing.
* Aslowas ~ 1 dB increase in propagation loss post heat treatment for cm length

waveguides.

* Intelligently design waveguides to be more resilient to y-radiation.
* Conclusion: Sandia’s silicon photonic platform suitable for space applications.
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16 | Propagation Loss in Fabricated Silicon Photonic Waveguides

Rib Waveguide Loss
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17 1 Free Carrier Absorption in Silicon

Modeled Change in Propagation Loss Modeled Change in Propagation Loss
Due to y-Radiation in Partially Etched Waveguides Due to y-Radiation in Partially Etched Waveguides
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Sag;(A = 1550 nm) = 6 x 107 18ANy, + 8.5 x 107 18AN,
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18 I Group Index Extraction

L & % B B §® ®N _§ & § & § _® § § B §B _§ § §B R N F .}

4 full e = ===
00 nm fully_efched waveguide=

|
0
10 i | |
o : !
3:/10'2" 1
c i
g I WW I
7 |
2 I i
E 4l |
g 10 | “y* , i
S H ]
= —
~~~~~~ :
-6 ~~~~
10 i :

; i i Bk i
500 1000 1500 2000 250.0'~~~~
Waveguide propagation delay (ps)

Strip Waveguide

ay

Rib Waveguide

46 . 38
2z - - - Simulated index B j
= %., + Experimental Data = b
e \ 5 B,
o , o T
5 4.1 v 5 3.75
g \\\ g \t\
LS P 0 - - -Simulated index i
D] - O .
E % E + Experimental Data
3.6 ' 3.7 '
107 10° 10" 107 10° 10°

Waveguide Width (;zm)

Waveguide Width (;:m)



19 1 Change in group index

Change in Group Index
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20 I Arrayed Waveguide Structure for Loss Characterization

Input

Arrayed waveguides

Star couplers

L=Ly+MXxAL

Output

Total foot print is 4 X 4 mm? (17 arrayed waveguides) and 8 X
8 mm? devices (35 arrayed waveguides) fabricated.

Partially etched rib waveguides and fully etched strip waveguides
studied of various widths.




21 I Theory
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24 I Viability of Silicon Photonics in Harsh Environments
Change in Propagation Loss Through
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Change in Propagation Loss Through
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« Anneal at 200° C for two hours

« Thermal detrapping of holes in SiO, and anneal of dangling interface bonds

* Increase in propagation loss, but not significant enough to lead to device
failure.

J. ZHANG ET. AL., INVESTIGATION OF X-RAY INDUCED RADIATION DAMAGE AT THE SI-SIO, INTERFACE OF SILICON SENSORS FOR THE EUROPEAN XFEL, 2012
P. FERNANDEZ-MARTINEZ ET. AL. SIMULATION OF TOTAL IONISING DOSE IN MOS CAPACITORS, 2011



