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2 Silicon Photonics in Harsh Environments

Silicon photonics

• CMOS compatible (integration), high
bandwidth, low loss

• Applications include optical communication
focal plane arrays (FPNs) and RF photonics

Harsh environments

• Space (low earth orbit (LEO))

How do silicon waveguides of various
geometries perform in these
environments?
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3 Effects of Gamma Radiation on Si/Si02 Structure

Traps at
Si/Si02
interface

Trapped holes
near Si/Si02

Dangling
bonds at
interface

Free Carrier Ahcnrntinn•

6crsi(il = 1550 nm) = 6 x 10-180NH + 8.5 X 10-180N,

M ZEILER, RADIATION-HARD SILICON PHOTONICS FOR FUTURE HIGH ENERGY PHYSICS EXPERIMENTS, 2017
N. M. JOHNSON ET. AL., CHARACTERISTIC ELECTRONIC DEFECTS AT THE SI-S102 INTERFACE, 1983

D. M. FLEETWOOD ET. AL., UNIFIED MODEL OF HOLE TRAPPING, 1/F NOISE, AND THERMALLY STIMULATED CURRENT IN MOS DEVICES, 2002
R. SOREF 8 B. BENNETT, ELECTROOPTICAL EFFECTS IN SILICON, 1987



4 Effects of Gamma Radiation on Si/Si02 Structure
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5 Comparison With Previous Studies

Source Type of Waveguide Waveguide Total Structure Effect of
Radiation Core Material Cladding

Material
Dose Radiation

on Loss

[1] X-ray Doped silicon
(-1017 cm-3)

Si02 10 krad Waveguides of
different
lengths

Decreased
propagation

loss

[2] Gamma Amorphous 5102 150 krad Ring Resonator None
silicon

[2] Gamma Amorphous
silicon

Polymer 150 krad Ring resonator Increased
propagation

loss

[3] Gamma Silicon Si02 10 krad Bragg None

[3] Gamma Silicon Si02 10 krad Ring Resonator None

[4] Gamma Silicon Nitride Si02 10 Mrad Ring Resonator None

[5] Gamma Silicon 5102 100 krad Arrayed Small
waveguide increase in
structure propagation

loss

[1] M. ZEILER ET. AL., RADIATION-HARD SILICON PHOTONICS FOR FUTURE HIGH ENERGY PHYSICS EXPERIMENTS, 2017
[2] S. GRILLANDA ET. AL., GAMMA RADIATION EFFECTS ON SILICON PHOTONIC WAVEGUIDES, 2016
[3] Z. AHMED AT. AL., ASSESSING RADIATION HARDNESS OF SILICON PHOTONIC SENSORS, 2018

[4] Q. DU ET. AL., GAMMA RADIATION EFFECTS IN AMORPHOUS SILICON AND SILICON NITRIDE PHOTONIC DEVICES, 2017
[5] THIS WORK
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6 Arrayed Waveguide Structure for Loss Characterization
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Arrayed waveguides
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7 Silicon Photonic Arrayed Waveguide Structure
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8 Swept-Wavelength Interferometric Measurements

Tunable
Laser
Source

Clock MZI

Measurement MZI

Lref

Balanced
Detector

Data
Acquisition
(DAQ)

Balanced
Detector

a 100 400 nm fully etched waveguide

0-2

500 1000 1500 2000 2500

Waveguide propagation delay (ps)

M .^% 1 \
GM-Mg )

I(v) — Ire f = 101 COSI_ k)A1,1+(m —

m,k
  M

27-cv
/ref/o em cos [ngref (v)Lref ng(v)(Lo + mAL)1

m

Interference between

arrayed waveguides with

one another

Interference between

arrayed waveguides and
reference arm of

measurement

interferometer
GEHL ET. AL., ACCURATE PHOTONIC WAVEGUIDE CHARACTERIZATION USING AN ARRAYED WAVEGUIDE STRUCTURE, 2018



9 Propagation Loss Extraction
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10 Pre-Exposure Propagation Loss

Propagation Loss in

Fully Etched Waveguides
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• Scattering at rough sidewalls and free carrier absorption are sources of propagation
loss.

• Loss extracted at room temperature.



11 Propagation Loss after 100 krad Absorbed Dose

Propagation Loss in
Fully Etched Waveguides
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• Irradiated using 60Co source (-1 MeV) at 130 rad/s dose rate for a time such that
total absorbed dose is 100 krad.

• Samples temperature maintained at room temperature.
• Slight increase in propagation loss due to increased free carrier absorption.



12 Recovery of Waveguide Performance Using Heat Treatment

Propagation Loss in

Fully Etched Waveguides
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• Samples annealed at 200° C for two hours.
induced charge attributed to hydrogen pd.ivetrung

dangling interface bonds and defects in Si02.*
• Reversal of performance degradation caused by induced radiation.

T. MA ET. AL., IONIZING RADIATION EFFECTS IN MOS DEVICES AND CIRCUITS, 1989



13 Viability of Silicon Photonics in Harsh Environments

Excess Propagation Loss in Silicon
Photonic Waveguides after 100 krad Dose
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• Increase in propagation loss, but minimal system impact.
• Induced radiation damage can be improved through annealing.
• As low as — 1 dB increase in propagation loss post heat treatment for cm length

waveguides.
• Intelligently design waveguides to be more resilient to y-radiation.
• Conclusion: Sandia's silicon photonic platform suitable for space applications.

1
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16 Propagation Loss in Fabricated Silicon Photonic Waveguides
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17 Free Carrier Absorption in Silicon
Modeled Change in Propagation Loss

Due to 7-Radiation in Partially Etched Waveguides
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18 Group Index Extraction
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19 Change in group index
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20 Arrayed Waveguide Structure for Loss Characterization

Input

Arrayed waveguides

L=L0+MxAL

Star couplers

• Total foot print is 4 X 4 mm2 (17 arrayed waveguides) and 8 X

8 mm2 devices (35 arrayed waveguides) fabricated.
• Partially etched rib waveguides and fully etched strip waveguides

studied of various widths.

Output



21 Theory
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22 Theory
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23 Theory
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24  Viability of Silicon Photonics in Harsh Environments
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• Anneal at 200° C for two hours
• Thermal detrapping of holes in Si02

_ . .
• Anneal of dangling Si bonds
• Increase in propagation loss, but

not significant enough to lead to
device failure.
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J. ZHANG ET. AL., INVESTIGATION OF X-RAY INDUCED RADIATION DAMAGE AT THE SI-S102 INTERFACE OF SILICON
SENSORS FOR THE EUROPEAN XFEL, 2012

P. FERNANDEZ-MARTINEZ ET. AL. SIMULATION OF TOTAL IONISING DOSE IN MOS CAPACITORS, 2011



25 Viability of Silicon Photonics in Harsh Environments
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