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Abstract. The MPI multithreading model has been historically difficult to
optimize; the interface that it provides for threads was designed as a process-
level interface. This model has led to implementations that treat function
calls as critical regions and protect them with locks to avoid race conditions.
‘We hypothesize that an interface designed specifically for threads can provide
superior performance than current approaches and even outperform single-
threaded MPI.

In this paper, we describe a design for partitioned communication in MPI that
we call finepoints. First, we assess the existing communication models for MPI
two-sided communication and then introduce finepoints as a hybrid of MPI
models that has the best features of each existing MPI communciation model.
In addition, “partitioned communication” created with finepoints leverages
new network hardware features that cannot be exploited with current MPI
point-to-point semantics, making this new approach both innovative and
useful both now and in the future.

To demonstrate the validity of our hypothesis, we implement a finepoints
library and show improvements against a state-of-the-art multithreaded
optimized Open MPI implementation on a Cray XC40 with an Aries network.
Our experiments demonstrate up to a 12x reduction in wait time for com-
pletion of send operations. This new model is shown working on a nuclear
reactor physics neutron-transport proxy-application, providing up to 26.1%
improvement in communication time and up to 4.8% improvement in runtime
over the best performing MPI communication mode, single-threaded MPI.

1 Introduction

The Message Passing Interface (MPI) [15] has supported a threaded interface for user
applications since 1997. Despite being supported for a long time, MPI multithreading
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is not widely used today. There are several factors preventing MPI multithreading
from widespread use. One factor is that MPI multithreading support remains poorly
optimized in some common implementations and their commercial derivatives. Lack
of consistency in performance is another major issue preventing widespread use, and
this deficiency is understandable: making a highly performant multithreaded MPI
library is complex and challenging. Additionally, it can be difficult for thread-based
code to interact with MPI in an efficient manner. For these reasons, many hybrid
codes today do not allow thread interaction with MPI, opting instead to coordinate
to allow a single thread to perform MPI calls. For example, an MPI4+OpenMP hybrid
code might perform a computation using many threads but still use a single master
thread to communicate using MPI.

The MPI threading model treats threads in much the same way as processes.
Threads can perform all of the functions available in MPI; however, many codes
do not require the full MPI multithreaded support that exists today. Alternative
interfaces designed specifically for thread interaction with MPI could be designed to
provide easy-to-use semantics and performance benefits over existing MPI interfaces.
Performance improvements could be realized by leveraging thread behaviors and
isolating the portion of the MPI API that needs to be thread-safe.

Contemporary MPI implementations typically use pessimistic serialization to
enforce thread safety to MPI calls (e.g., locks), allowing only a single thread to interact
within certain MPI critical paths or data (e.g., a given communicator) at a given time.
While this restriction may be desirable for a general threading case where the behavior
of threads is unknown, it can be problematic for threads that would otherwise not
interfere with each other in their participation in a communication. For example, if
multiple threads each write to a shared memory buffer using non-overlapping offsets,
no interference would occur.

A 2018 survey [2] highlighted application developer concerns with MPI related to
the US Department of Energy’s Exascale Computing Project. All of the developers
not currently using thread multiple cited performance as the reason they were
not using it, however, a large majority of those developers (86%) want to interact
with MPT using multiple threads. Historically, some implementations used a single
global lock on the MPI library. However, many implementations have recently moved
to locking at a fine granularity. We have used an optimized fine-grain locking MPI
for comparison to our proposed MPI threading interface enhancements, finepoints, in
this work. Finepoints uses lightweight synchronization, requiring only a single atomic
for synchronization (which is the minimum synchronization overhead achievable
on modern hardware). It also works with emerging hardware to fully offload the
threading synchronization overhead. Finepoints is the first solution to offer many
of the optimizations that are available to one-sided communication methods in a
two-sided model.

In this paper we will detail the design of our proposed solution, finepoints, a
partitioned communication interface for MPI. This approach partitions buffers in
MPI, allowing threads to contribute individual parts to a single communication
operation. We will describe the interface and show the proposed MPI function calls
and detail the reasoning behind the design as well as the benefits that the design
provides. Next, we will present an implementation of finepoints and evaluate it on a
Cray XC40 platform to assess its performance impact. Further, we will detail the
changes that we made to two applications to adapt them to use finepoints and show



the results of using the interface on a reactor neutron transport proxy application
and a finite element code. Finally, we will summarize the results and discuss how
these findings relate to the existing work in the area.

This paper makes the following contributions:

— A two-sided, optimizable MPI interface designed specifically for threading/tasking
support;

— A design for how finepoints can be fully offloaded to future MPI message matching
NIC hardware; and,

— The first finepoints-integrated proxy applications, a reactor neutron transport
simulation and a finite element code.

2 Background

The model for multithreading in MPI is simple: threads in a process can access MPI
however they wish, using the full interface that is used on a per-process basis in a
non-threaded MPI program. There are no modifications to the interface for threads,
and all threads share the MPI address (rank) of their parent process. MPI threading
modes simply serve to dictate what level of thread-safety is provided by MPI—either
MPI_THREAD MULTIPLE, where all calls are thread safe, or funneled and serialized
mode, in which the user is responsible for managing thread-safety with MPI. There
is a fourth mode, single, in which threads do not exist. In this paper, we refer to
threads as the mechanism by which tasks are run/completed.

MPT provides two main point-to-point interfaces, two-sided send/recv where each
message sent matches a receive posted at the target. This results in per-message
completion notifications and strong ordering guarantees for messages sent on a
given communicator. MPI also provides a one-sided interface called Remote Memory
Access (RMA). RMA uses a put/get semantic that can be conceptualized as a remote
load/store model. RMA requires that an application explicitly handle synchronization
of communication buffers. MPI RMA code typically requires major algorithm changes
to use it effectively [14] and its expected use at exascale still remains low (<25% [2]).
While work on the RMA model is promising in terms of performance [8,12], the
application level code changes required to existing code bases [14] compels exploration
of a two-sided model.

The endpoints proposal, which is no longer under consideration by the MPI
standardization committee, was an attempt to allow for increased utility for multiple
threads (¢f, [5]). Endpoints addressed threads by assigning a logical address (rank)
to each thread or user defined group of threads, enabling per-thread addressability.
Endpoints did not fundamentally change the communication model, it only added
additional addressability to the existing multithreaded model in MPI. There is
no public implementation of MPI endpoints and given its current status with the
standards committee, it is unlikely that one will be released in the foreseeable future.
Unfortunately, this means that performance comparisons are not possible. However,
we can estimate the overheads of Endpoints matching, by emulating it’s behavior
with a traditional match list implementation that separates traffic by communicator.
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Fig. 1. MPI models for data transmission with multiple tasks/threads. Model A is the
traditional single-send approach in an MPI4+X applications. Model B is the current
multithreaded send-per-thread model. Model C is our proposed partitioned model which
leverages the completion model of A and transfer model of B.

2.1 MPI Multithreaded Communication Models

Figure 1 demonstrates the two main threading models used with MPI. Model A shows
the single-send (single-threaded) MPI model, where only a single thread calls into
MPI, regardless of how many tasks may be used in the non-communication regions of
code. There is a time, T,,4i; that is required to wait for all task dependencies on the
communication buffer to complete. No communication can happen even if some tasks
are ready to send their data. Once all of the data is complete, there is some overhead
for issuing the send commands in MPI, Og.,4, after which data is transferred over
the network, Tyqns fer, and finally some overhead on the receiver-side for matching
the message and marking the request as complete, O,.ccy -

Model B demonstrates the many-send model, in which each task sends data as it
completes. This results in having no T,,4;+ period as data can be sent when it becomes
available (all dependancies for the data are complete and it is ready-to-send). Note
the use of the time before the dotted vertical line that denotes the beginning of the
transfer in model A. However, this also results in synchronization overhead, Ogync
needed to ensure thread-safety in the MPI library, and numpcqqs times the send
and recv overheads. In addition, the message matching overhead for model B will
likely be much larger than model A. Because matching is done serially, this message
matching overhead will not only significantly increase all of the instances of Oy¢cy, it
can lead to cascading delays in subsequent instances of O,.¢cy -

Therefore, we have two models, A, the single-send model, which cannot take
advantage of T,4;; and B, the many-send model, that has more overhead than model
A. In current applications, the single-send model is the more popular approach as it
has higher performance in many scenarios. However, there is broad interest in using
a model similar to the many-send model as previously discussed [2]. To address this,
we propose that a third model, C, that combines the best characteristics of both
current models by taking advantage of T4+ like model B and offering the minimal



receive-side overhead of model A. Model C allows tasks to notify the MPI library
that their data is available to send, but allows MPI to make the decision on when to
transfer data, ensuring that send overheads and network packet level efficiency can
be controlled by MPI. In addition, MPI can manage multiple outstanding operations,
allowing model C to take advantage of NIC-level parallelism, unlike model A. The
number of receive-side notifications/completions is controllable between 1 and Nygsgs,
allowing for control over receive-side overhead. By setting the number of send-side
data partitions to 1, model C can approximate model A; there is no inherent 1:1
relationship between tasks and partitions.

3 Hybrid-model Design Requirements

There are three requirements for the design of partitioned communication (model C in
figure 1). First, the design must allow communication to occur when tasks complete,
rather than synchronizing on a thread barrier or join before communicating. This
addresses the weakness in model A, that there is wasted time due to a monolithic task
dependency of all tasks completing before communication. This allows partitioned
communication to emulate the strengths of model B, a lack of this monolithic task
dependency. We will refer to the productive use of the time that would be spent
waiting in model A as early-bird communication.

Second, the design must address the weakness in model B by minimizing or hiding
the overheads of thread-safety, send operations, and receive-side overhead. Low
receive-side overhead is achieved by reducing number of matching operations and
request completions/notifications. There can be an advantage to having multiple
completions, namely that task dependencies on a subset of the data can progress when
the required remote data becomes available. However, this needs to be balanced with
the increased overhead caused by multiple completions. For the purposes of this paper,
we choose to minimize receive-side overhead by using a single match/completion
operation. This will keep the design in line with the desirable low overhead in model
A and avoid matching issues. The last requirement is that the MPI implementation
should be free to send data whenever it is most efficient to do so. This allows data
to be sent with good wire efficiency (header to payload ratio), a benefit of model
A and weakness of model B. By controlling the size of the data sent and allowing
for aggregation inside the MPI library we can control the wire efficiency of data
transfers for model C. This is something that both models A and B are not able to
take advantage of; each send operation is sent as a distinct message in modern MPI
libraries.

To allow for easy use/adoption of the partition communication models, there are
three main objectives that the design has to meet. The first objective was to align our
design with current practice. Existing concurrency models like OpenMP allow for
tasks and threads to work cooperatively on a shared buffer—in the most simple sense,
like a SIMD model, where multiple data items in a buffer are acted on simultaneously.
Threading can be more complicated but the basic concepts behind this approach can
be leveraged to better match the thread usage model for MPI. This widely adopted
tasking/threading model provides a single buffer that multiple actors (thread, tasks,
etc.) can operate on. By matching the semantics of the MPI calls to the semantics of
common multithreading models, mismatch can be avoided at the interface level and
programmers can easily translate existing threading code to communication.



The second objective was to align our design with legacy practice. Legacy applica-
tions have leveraged an MPI4-X model with distinct communication and computation
phases in a bulk synchronous model. Multi-million-line MPI codes require great
effort to modify and revalidate. Therefore, minimal code change at the MPI level is
desirable in terms of time and cost for updating and revalidating legacy code bases.
This is useful to ensure the widest adoption possible.

Finally, the third objective was to aline our design with anticipated future prac-
tices. Proposed models for future applications include task based threading, over
decomposition, adaptive workflows, in-situ analytics, etc. These models increase the
complexity of requirements for the communication layer of an HPC system. Changing
the communication model of legacy and modern codes is a significant undertaking,
often performed by non-experts of MPI. To reduce the burden on application de-
velopers the interface needs to be adaptable to future hardware and programming
models with little to no impact on interface provided by an implementation.

3.1 Finepoints: Partitioned Communication

Finepoints is a MPI interface for partitioned communication designed to match
the characteristics of the hybrid communication model C in figure 1. Partitioned
communication is a new concept in MPI. With partitioned communication we propose
breaking the monolithic nature of the single send model by allowing tasks to express
data availability to the MPI library by reporting parts of an operation as ready. This
allows data to be moved as a portion of a larger operation. The larger operation will
have the same receiver-side overhead as the single-send model. We will present the
design of finepoints. We target the two-sided communication model in MPI for our
design as it is by far the most popular communication method in MPI applications.
However, we will discuss the use of MPI’s one-sided model where it is a possible
option for meeting our requirements.

The first requirement was to use the time that would otherwise be wasted in
the case where many threads or tasks need to synchronize before sending any data.
Partitioning a send operation accomplishes this goal by notifying MPI as portions of
the data buffer become available. This gives MPI the opportunity to send data if
doing so is desirable. There are situations in which delaying sending the data is the
correct decision, for example, when the available data is too small in size. Another
situation in which a system would want to delay data transfer is when the data in
the buffer is too fragmented to be sent efficiently. Some networking hardware can
efficiently handle strided data or IOvecs, which can describe fragments of data to be
collected from memory and sent (gathered) and distributed back to target memory
on the receive side (scattered). These features make it desirable to leverage hardware
that supports such gather/scatter operations, such as Remote Direct Memory Access
(RDMA) as it maps well to these capabilities.

To address the low message processing overhead requirement we must keep the
number of messages that MPI must match small, similar to a single-threaded MPI
process. One way to get around the matching requirement is the use one-sided
communication, which does not provide matching. The drawback to this approach is
that the method of completing a given communication with one-sided code is much
different than that of two-sided send/recv. Send/recv provides clear message arrival
notification as a completed request. One sided communication requires synchronizing



a memory window between the sending and receiving nodes. This change in semantics
can significantly impact application code, in some cases requiring changing the
underlying algorithms to better fit the communication semantics. To avoid these
drawbacks a design must leverage two-sided send /recv semantics and must produce
as few messages that need to be matched as possible. Along these lines, partitioned
communication matches these requirements. It reduces the number of messages
that must be processed (matched and notified of completion) but also allows for
fine-grained notification of parts of a buffer becoming available to send to MPI. This
allows MPI to optimize how the data is sent for any given network architecture,
but still allows for the well known send/recv completion semantics. This addresses
the issues that can afflict the many-send situation (model B) of each thread/task
sending its own messages. This also addresses the third requirement for our design,
controllable wire efficiency.

Now that all of the desirable traits and potential designs have been discussed, we
can outline a basic design and API for finepoints. Finepoints will use a partitioned
send, allowing threads/tasks to notify MPI when portions of a larger shared buffer
become available to send. We will only allow a limited number of completions on the
receive side to minimize message processing overhead. We can allow some receive
side partitioning/notification, but we must be careful not to create too high of an
overhead from matching/request completion. Next, we will require some sort of buffer
negotiation, as the buffer can arrive in chunks instead of all at once. This can be done
using a persistent operation to reduce setup overhead or an on-the-fly one-time-use
buffer negotiation. We will provide both interfaces for send operations.

3.2 Partitioned MPI Communication Interface

Partitioned communication in MPI as a concept can be applied to almost all of
MPT’s existing communication calls, both point-to-point and collectives. For the
purposes of our paper, we will only cover point-to-point communication. We present
our proposed additions to the MPI-3 or MPI-4 standard in C; for brevity, we omit
the Fortran versions of the calls.

The persistent communication approach requires that certain information about
the partitioned operation be expressed to MPI prior to writing to any buffers.
First, the operation must be initialized; that is, the required information to set
up the buffers and synchronization methods must be provided.We propose a
MPIX Partitioned_send init function call defined below. This function can be
used to initialize the partitioned send, which is similar to a persistent operation
setup, but introduces the concept of message partitioning.

int MPIX_Partitioned_send_init(
void *buf, int count, MPI_Datatype data_type, int to_rank, int to_tag,
int num_partitions, MPI_Info info, MPI_Comm comm, MPI_Request *request);

Similarly, a recv version of this call must be created to allow for the sender
and receiver sides to agree on a buffer for the partial messages (which may be the
application buffer on the target side).

int MPIX_Partitioned_recv_init(
void *buf, int count, MPI_Datatype data_type, int from_rank, int from_tag,
MPI_Info info, MPI_Comm comm, MPI_Request *request);



These initialization functions match via tags, sender/receiver rank, and com-
municator at initialization to form a two-process persistent operation (channel).
While wildcard sources/tags may be used for from rank and from_tag in the
MPIX Partitioned recv_init call, it is up to the programmer to make sure that
there is logical consistency between the sender and receiver that connect during
this process. Unlike normal point-to-point persistent send/recv, these operations
may communicate. To reduce complexity in initialization, these calls should be
non-blocking. The output of this function is a request that can be used immediately
in a MPIX Pready call.

When a request is active on the send side, buffer partition elements may be added
with the following API:

int MPIX_Pready(
void* buf, int count, MPI_Datatype in_datatype, int offset_index,
MPI_Request *request);

For non-persistent communication, a normal recv operation is used at the target
and a partitioned send request can be started with the following API:

int MPIX_Ipsend(
void *buf, int count, MPI_Datatype data_type, int to_rank, int to_tag,
int num_partitions, MPI_Info info, MPI_Comm comm, MPI_Request *request);

When the request is in progress, it waits for num_partitions MPIX Pready calls.
When the number of buffer partitions added equals the num_partitions argument
given at initialization, no more partitions may be added prior to a completion
operation (MPI_Wait). The total size of the buffer is the count value times the size
of the datatype, in bytes, given at initialization.

When using the persistent version of Pready/wait calls (e.g. MPIX_Pready, not
MPIX_Ipsend), MPIX Pready calls for subsequent rounds of communication can only
be made after a successful MPI_Wait or MPI_Test call on that request. The buffer
should not be altered until it is confirmed that the send operation is complete. This
motivates the use of multiple send buffers as it allows tasks to continue to execute
and overlap their computation with communication. With even a limited number of
buffers, an application can avoid waiting long periods for communication completion.
When combined with the non-synchronous nature of MPIX Pready calls, this will
enable applications to spend essentially no time in synchronization barriers for
coordinating send operations or waiting on their completion. Tasks will still be
required to wait for incoming data if it is not available.

It should be noted that extending the partitioned communication interface to
support partial receives is trivial. However, we leave such extensions to future work
as the optimization space for receive side partitioning is large and warrants its own
full-scale investigation. We instead concentrate on the performance benefits of the
send-side partitioning in this paper as an introduction to the general partitioned
communication concept.

MPIX_Ipsend calls are expected to return immediately. MPIX_Pready calls are
subsequently used to indicate partition readiness. MPIX_Ipsend calls are similar to
existing persistent communications interfaces, except that there are no requirements
for communication-initiating calls prior to calling MPIX_Ipsend, the setup happens
when MPIX_Ipsend is called. It is required that the receiver-side post a non-blocking



receive that will match the MPIX_Ipsend call. If no match is found MPIX_Ipsend will
return an error code indicating that the operation is not ready and the user should
try again. This error reporting is not fatal, following the precedent set by file I/O in
MPIL.

There are no blocking versions of MPIX_Preadys; it is always a non-blocking call.
The offset_index is an integer that specifies what internal index the datatypes have
in the buffer. For example, for a simple contiguous buffer case, the first element
would have index 0. Complex datatypes are supported, and the index associated
with those datatypes should be interpreted as their logical placement in the buffer
compared to the other expected contributions of datatypes. There is no demand that
buffer contributions be non-overlapping in memory; however, we will not define the
behavior for overlapping buffer additions here.

MPIX_Pready and MPIX_Ipsend calls can be made thread-safe independently of the
other thread concurrency requirements of the MPI library because of the threading
isolation that these functions provide. Since partitioned communication does not rely
on other parts of the MPI library that have potential thread safety issues, we propose
that the finepoints calls use a new threading mode, MPT_THREAD _PARTITIONED, which
allows high-performance lock-free MPI calls for the majority of the library by isolating
a thread-specific interface for handling concurrency. Partitioned communication
need not share significant internal MPI data structures, and the only concurrency
required is an atomic fetch and increment to determine if the partitioned operation
has reached its num_partitions threshold. Finepoints leverages the knowledge of
thread/task interaction at the application and runtime levels to allow for overhead
much lower than an MPI implementation with a traditional send/recv type interface
could reasonably be expected to provide. An example of finepoints code is provided
in Algorithm 2 which demonstrates a simple microbenchmark that we will use in
Section 4.

3.3 Hardware Support for Partitioned Send

We can design full-featured hardware support for partitioned send operations from
basic operations of some MPI message matching NICs without the need for new
hardware. An example of a networking solution that can support partitioned sends
today is Bull’s BXI interconnect [3]. Bull’s BXI network uses the Portals 4 networking
API [1], which supports triggered operations. Triggered operations use a hardware
counter on networking devices to accumulate counts of certain events that can be
associated with them. Consequently, on the receive side, a Portals-compatible NIC
can keep a count of the number of expected contributions to a buffer and deliver
immediate notification of completion to the target. The send-side MPI library can
leverage triggered operations as well, by staging multiple requested send operations
with the different counts on which they are triggered. Using the Pt1CTInc function
in the Portals 4 API, MPI can perform the bookkeeping required for subsections of
the partitioned buffer on the NIC hardware. Once a given sub-partition of the overall
buffer has been placed, the hardware automatically triggers the send to occur. This
automatic send allows for increased network efficiency while offloading a large portion
of the work that would otherwise have to occur in software (counting incoming
segments and determining when a request is complete). This concept is the same
one behind the mechanism of offloading MPI collectives with Portals-compatible



Data: buf: application buffer, msg_size: message size
Result: transmission of data buffer to remote node using finepoints
if sender then
MPIX _Partitioned_send_init(&buf, msg_size, MPI_INT,
‘ receiver_rank, my_tag, num_partitions, info, MPI.COMM_WORLD, &request);
else
MPIX _Partitioned_recv_init(&buf, msg_size,

‘ MPLINT, sender_rank, my_tag, info, MPI.COMM_WORLD, &request);
end
for iteration = 0; iteration++; iteration == 1000 do
#pragma omp parallel {
/* We are

only using one buffer, so need to wait on send completion before re-using it*/
if /first_loop then

| MPI_Wait(&request);
end
compute_loop(compute_time);
first_loop = false;
msg_chunk_size = msg_size/omp_get_num_threads();
if sender &€ (delay > 0) €96 my_thread_id == 0 then

| wait(delay);

end

if sender then
MPIX _Pready(&buf,

msg_chunk_size, MPI_INT, msg_chunk_size*omp_thread num(), &request);
/*When all partitions are ready, remote Recv will match and proceed*/
else

if my_thread_id == 0 then
MPI_Recv(&buf, msg_size,
’ MPIINT, sender_rank, my_tag, MPI.COMM_WORLD, &status);

end
end

}

end
comm_time = comm_time / 1000;

Fig. 2. Pseudo code for Finepoints Microbenchmark

hardware [18]. Therefore, finepoints allows the utilization of network offloading
capabilities that are currently being applied for MPI collective offloads to be used for
point-to-point communication as well. Networking offload is desirable at exascale [7],
and therefore we expect that such offloading capabilities will be widely available in
the near future.

4 Experimental Results

In this section, we detail our experimental platform and assess the performance of
finepoints via extensive microbenchmark experimentation and the evaluation of two
proxy applications, a finite elements code, MiniFE [11], and a nuclear reactor physics
code, SimpleMOC [10], both part of the application set for the Exascale Computing
Project run by the US Department of Energy (DOE).

To assess finepoints, we have implemented a library on top of MPI that allows
partitioned communication (finepoints) to be layered on top of existing MPT calls,
particularly the MPT RMA interface. These results demonstrate the performance of
a non-hardware implementation of finepoints.



4.1 Experimental Platform

Our experiments were run on a Cray XC40 system. XC40s have two different node
types: a dual-socket node with Haswell E5-2698v3 CPUs and 128GB RAM, and a
single-socket node with a Knights Landing (KNL) Xeon Phi 7250 many-core CPU
with 96GB RAM and 16GB MCDRAM. This model has 68 cores each with support for
4-way SMT. For this reason, microbenchmarks use 64 threads while the application
study extends to 256. For purposes of the evaluation, the number of partitions in the
subsequent experiments is set to be the number of threads. While there are other
configurations available, this is the primary use case we expect to see in finepoints
applications. We used the KNL nodes exclusively, as many-core architectures let us
explore large amounts of thread concurrency. These results all utilize the same Cray
Aries Interconnect with a theoretical maximum bandwidth of 10.2 GiB/s. Open MPI
3.0 is used as the thread-optimized MPI library to interface with our finepoints library.
Open MPI’s message matching solution combined with different tags for each multi-
send message mean that message matching overhead is minimal, approximating the
performance of traditional as well as persistent multi-send (MPI_THREAD MULTIPLE
overhead is still significant).

4.2 Microbenchmarks

Microbenchmark Setup In order to evaluate the fine-grain behavior of finepoints,
we have created microbenchmarks that assess performance during OpenMP parallel
loop execution for data exchanges. Our benchmarks allow for the independent
variables of message size, number of threads, compute time per loop, and compute
time variation. The compute time variation variable represents typical application
performance variation that results from imbalances in the amount of work to be done
per process, due to OS noise and process placement on large systems. This variation
allows us to explore finepoints ability to leverage the idle thread time caused by this
noise, as finepoints decouples individual thread completion from communication
dependency. This noise represents the Ty,4;; time in the communication models
comparison from Figure 1. To implement this compute time variation, we delay
a victim thread by the required noise amount. After this noise is injected, the
microbenchmarks communicate using the selected communication model. For single
send, the threads synchronize after which a single large message is sent. For multi send
and finepoints, each thread sends an equal portion of the message using an MPI_Send
or a Pready call. For the single-thread case, this delays the thread synchronization
and thus the only send call; for multithread, it is the last send call to occur; and for
finepoints, it is the MPI_Pready call time for the completing call.

The dependent variable from this microbenchmark is perceived bandwidth. Per-
ceived bandwidth is bandwidth required for an single threaded MPI_Send to complete
in an equivalent time. This is measured by instrumenting the time of the final thread
joining the communication region, where the MPI_Send would have been called in
the single threaded model, to the completion of all communication for the iteration.
From our communication models in Figure 1, this corresponds to calculating the
bandwidth from the all-tasks complete point in time (the dotted vertical line). We
do this as it provides a baseline for performance centered on the single-send model,
the dominant MPI communication model. For a traditional MPI_Send, the perceived



bandwidth is the whole transfer time of the message. For finepoints and traditional
multi-send, the perceived bandwidth is the bandwidth that the single-send model
would need in order to complete the communication after the all-tasks complete
point to match the wait time of finepoints or multi-send. While these numbers could
be presented as time spent waiting after the all-tasks complete point, perceived
bandwidth allows a comparison to a well-known metric that can be scaled with trivial
effort for future generations of hardware.

Perceived bandwidth can be significantly higher than the actual bandwidth on a
system. For example, if 100 workers all need to send one piece of data to a neighbor
node and 95 workers complete but 5 workers take significantly longer, 95% of the
data transfer can occur with finepoints and multi-send before the last workers reach
their communication calls. Thus, the observed communication call could take 95%
less time than a call that used the single-thread method, which requires all data to be
collected before sending the first byte. Each microbenchmark experiment was run for
50 iterations and the data in this section represents an average over those iterations.

Microbenchmark Results Our first experiments vary only message size and
thread count. Figure 3a shows the performance of finepoints versus send/recv in
MPI for both single-thread and traditional multi-send MPI. These results exclude
any compute time in the communication loops or any noise.

Figure 3a shows typical trends that are expected by MPI experts. The single-send
model’s MPI operation is superior to the multi-send model’s MPI version and, as
lock contention increases with the number of threads, the performance gap between
single-send and multi-send models grows, even for our multithreading-optimized
MPI implementation. The single-send model clearly outperforms multi-send and
finepoints at small message sizes when ignoring the drop in performance that occurs
during the eager-rendezvous protocol switch. Breaking up a small message into 16,
32, or 64 parts operates the network in the lower part of a typical bandwidth curve,
where packet overheads dominate costs. For small message sizes, performing a single
send operation is still preferable, while the benefits of the finepoints approach are
clear with larger message sizes. It should be noted that finepoints can accommodate
aggregation of smaller messages such that the performance of singlethreaded MPI
can be approximated. The results for these benchmarks do not use aggregation.

The performance of small message transfers may appear to be problematic as
many MPI applications use small to medium sized messages frequently. However,
with the shift towards fewer MPI processes and more threads per process, the
overall amount of data needed to be transmitted by a single process will grow. A
64 process MPI-everywhere solution will have to send 64x more data when it is
run in a one-process, 64 thread configuration, leading to larger message sizes for
multithreaded codes. This will push many application into an area where finepoints
performs well. Based on previous work exploring message sizes used by applications
of interest [6], we find that message sizes in the 8KiB-16KiB range are important and
many applications send messages of 1 MiB or more, resulting in the vast majority of
network usage for codes. Therefore, when we move to a multithreaded code, we expect
messages to be Nipreads times larger in size, and this is well within the message size
range where finepoints is the clear winner. Notably, at a 1 MiB transfer size (total,
not per thread), finepoints outperforms the single-send model performance for all
thread counts below 64 (results not shown for space). At 64 threads, a 2 MiB transfer



is required to outperform the single-send model performance. This performance gap
is significant for large transfers when all of the bandwidth curves flatten out. The
difference in performance, from 7,200 MiB per second to 9,000 MiB per second on
finepoints, represents a significant 25% increase in throughput.

This difference results from several factors. First, finepoints can easily leverage
hardware RDMA data transfers, allowing for high-performance messaging. Second,
the MPI library ezpects the finepoints transfer to occur; with traditional MPI
send /recv, the library must react to the transfer with no advance setup. What is most
promising here is that the observed improvement comprises a worst-case outcome
for finepoints, since there is no time variance in the compute or noise in the system
that allows finepoints to take advantage of available bandwidth in the network while
laggard threads finish their compute tasks.
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Fig. 3. Partitioned Communication with varying noise and compute load

Figure 3b shows finepoints working with a 100ms compute loop with 1% noise.
This reflects real codes on production machines better than no-noise situations do,
as 2-4% mnoise has been common on systems for many years [16]. Both multi-send
and finepoints can show bandwidths greater than the available bandwidth from
the NIC using this approach because they have the opportunity to send portions
of the overall transfer before the final process/thread reaches the communication
call. With 64 threads, we see the drawback of MPI’s THREAD_MULTIPLE mode. Lock
contention is high with large thread counts, impacting the performance of the
multi-send approach. While multi-send quickly degrades in performance and even
underperforms the single-send model, finepoints gains performance from having
many threads. Eventually with large enough message sizes, we see finepoints and
multi-send converging back to native wire rates, this happens when there is so much
data that the early-bird overlapping cannot preemptively send a large enough portion
of the data to see major performance gains. It should be noted that even in these
cases, finepoints performance is no worse than the singlethreaded case. Finepoints
starts to see a small drop in performance at the 64-thread level illustrated in our
Figure 3b, but still significantly outperforms the best competitor at message sizes of
greater than 1 MiB total. To put these bandwidth numbers in context, finepoints
with a 8MiB message will spend only 0.5% of its time waiting for communication
with a 100ms compute loop, compared to 1.9% for the single-send model and 1.3%
for multithreaded MPI. This result highlights one of the key performance benefits
of finepoints, namely that multiple threads can initiate data movement, exploiting



Twait from our communication models without the locking overhead Ty qiti0ck and
much smaller O,y compared to the multi-send mode.

Shorter compute times can impact the amount of overlap that finepoints can
exploit, with compute times of 10ms demonstrating up to a 3x improvement in
performance versus the single-send model as shown in Figure 4a. Figure 3¢ shows
early-bird communication mostly completing before the final thread arrives at the
partitioned communication call. With the chance to send this data in advance, the
perceived bandwidth when the final thread reaches the partitioned communication
call is 12x greater than a single threaded approach for 64 threads at message sizes
of 64 MiB. At a 64 MiB message size finepoints only spends 0.5% of time waiting
for communication while the single-send model spends 8.8% and multi-send spends
0.95%. For the 4% noise case, which we expect to be typical of future systems we
can observe in Figure 4b that with reasonable compute times, finepoints can beat
single threaded MPI by up to than 9.5x and multi-send by 3.3 in the best case.
Thus, early-bird communication can help alleviate a major cost of bulk-synchronous
parallelism (BSP). It achieves this result by reducing the time penalty for poor
synchronization, reducing the delay after all threads have reached the synchronization
point as much as possible.

To ensure that the results observed for finepoints are not a result of the lightweight
cores used for the experiments, we have also conducted similar testing on the Haswell
partition of our system. These results are omitted for space, but the general trends
hold on a Haswell system as well: finepoints outperforms both multi-send and the
single-send model for message sizes larger than 1MB across a spectrum of no-noise to
noisy execution. For example, at 32 threads (one thread per core), finepoints beats
single by 34% and multi-send by 99% at 64MiB message sizes with no aggregation,
with the latest version of Cray MPICH.

4.3 Message Aggregation Optimizations

The results presented thus far have sent messages as soon as any data was added to
the partitioned buffer; however, finepoints can also optimize the transfers out of the
partitioned buffer by aggregating traflic to the target node. We have implemented an
aggregation scheme that allows the user to specify an aggregation threshold for their
network. Our aggregation scheme attempts to combine send operations that occur
close together in time that are in contiguous memory, up to the aggregation threshold
size. Timeouts will cause data to move regardless of aggregation if operations are
sufficient spread out in time.

Aggregation is most effective when there is a large number of threads, which
corresponds to more numerous and smaller individual data transfers. Figure 4c
shows the benefit of this aggregation versus a baseline finepoints without aggregation
for 64 threads with a 512 KiB aggregation size. We observe that the aggregation
optimization can have large impact on the overall performance of finepoints at
high thread counts. For the 100ms compute loop results shown, the maximum gain
is 199.5% at 2MiB, and the optimized version is always better than the baseline
finepoints case.
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Fig. 4. Three experiments exploring the effects of finepoints in situations of short iteration
times, realistic noise, and with aggregation

4.4 Application Proxies

To demonstrate finepoints with an application, we chose two application proxies
to test the impact of finepoints. MiniFE is a proxy application from the Mantevo
suite [11] that uses conjugate gradient solver on a finite elements problem. The main
communication pattern is a fully packed halo exchange, optimized for the single-send
model. MiniFE is essentially a worst case for finepoints as it is optimized to send
small messages and is highly tuned for the single-send model. To leverage finepoints
in this code, we modified the application in the most direct manner possible, where
each thread sends a subset of the overall buffer. This results in a significantly larger
number of messages being sent by each peer compared to original serialized code.
To provide a comparison to current multithreaded paradigms, we have included a
multi-send version as well that decomposes messages in the same manner of the
finepoints version.

Figure 5 shows the results of MiniFE run with 16 nodes (1 process per node) and
a 3303 problem size per process with no injected variation in the communication
phase. Each data point represents the average of three runs. In this graph we show
communication time on the primary y axis and cg-solve time on the secondary y axis.
The general trends in this data show that finepoints performs better than multi-send
but worse than the original serialized code. Because of a bug we encountered in Open
MPI, multi-send runs leveraging more than 32 threads failed to complete. At this scale,
the communication in finepoints is a factor of 2 better than the multi-send baseline.
In follow-on experiments leveraging Cray’s MPI, we found that multi-send spent 61%
of the CG solve time in communication at 256 threads. In contrast, finepoints spends
just 11% of its time communicating with 256 threads. As the message decomposition
strategy results in a larger number of smaller size messages, it is unsurprising that
finepoints spends more time communicating than the single threaded case.

While finepoints does spend a larger percentage of its solve time doing commu-
nication than the single-send model (11% vs 2% at 256 threads), there are a two
promising things to note. First, this is a worst-case application for finepoints, MiniFE
has a highly optimized communication pattern, sending as little data as possible in
it’s halo exchange. Given this, application developers can use finepoints to leverage
multithreaded communication patterns with a small to negligible impact in applica-
tion performance. Second, the application use of finepoints is unoptimized and cannot
take advantage of variations in compute time. In the current implementation, MiniFE
exits the parallel region and then starts a new parallel region for communication.



This means the time still includes the Ty ait portion model A and no early bird
communication can occur. This is an example of how an unoptimized finepoints code
can perform significantly better than current multithreaded communication models.
Leveraging knowledge of the data dependencies and thread behavior, application
developers could integrate these communication calls into their compute threads and
enable more early-bird communication reducing runtime. This case highlights the
fact that, while there are cases where applications will need to be optimized to see
benefit from finepoints, the overhead from finepoints is low enough that the impacts
to a “worst case” application, with small halo exchanges and little noise are minimal.
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Fig. 5. Finepoints impact on MiniFE performance

SimpleMOC, a reactor physics proxy application from MIT and Argonne National
Laboratory, is part of the DOE’s ECP application set. We chose this code because
it simulates a real problem (albeit not easily adaptable to other problems, which
is why it is a proxy application). Also, we can convert its existing communication
pattern to partitioned communication without the need to re-factor its data packing
routines, making it possible to ensure continued program validity when modified by
non-reactor physics experts. This also means that the volume of code changes for
such applications are less than 100 lines of code. The changes that need to be made
to adopt finepoints should also be easy to implement for application developers who
are domain area specialists. We expect that all codes that utilize halo-type message
exchanges can benefit from our approach.

SimpleMOC demonstrates the method-of-characteristics technique to solve partial
differential equations with a specific application to 3D neutron transport in a light-
water nuclear reactor at full scale. SimpleMOC requires multiples of four for MPIT
process count and communicates only in groups of four; therefore, we have used
four KNL nodes for our tests allowing us to use 1024 cores total, with 256 threads
per node. Using a larger number of nodes will not provide more insight. Due to
the communication pattern used by the code scaling up the number of nodes will
simply duplicate the communication pattern. Therefore out results demonstrate the
improvement in a given “cell” of the problem breakdown that will be applicable to
much larger problem sizes.

For experimental purposes, we have added barriers to the communication portion
of the code and included code that allows artificial injection of noise in proportion
to the compute loop time. This modification is useful, as we have observed 2%-5%



noise impacts in regular runs of the SimpleMOC communication section. By using
barriers and artificial injection, we can tightly control the occurrence of this noise in
the communication region, making experimentation and understanding easier. We
have also run tests without noise controls to demonstrate production performance
expectations. In order to let communication begin as soon as possible, we have
eliminated the synchronization barrier entirely, allowing the first thread to complete
to begin communication (and report the solver completion time). This is the best case
for computation as the time reported for our unconstrained finepoints application is
the time the first thread gets to the communication point. However, this makes the
communication time longer as the communication cannot complete until all compute
threads have completed, the performance variation is observed in the communication
time and is similar to our large variance case, where overlap occurs, but its benefits
are degraded due to the time spent waiting for laggard threads in which there is no
communication to perform. The net effect of allowing communication to begin as
soon as possible is that the performance variation between threads is observed in
the communication phase. Overall this is similar to the time required when 2%-3%
variation is injected in the communication phase, but the speedups in overall time
shows up in the solve completion due to our eager recording of the solve time and our
early start time for communication. All data for SimpleMOC is an average of 10 runs,
and we use our aggregation-optimized MPI library with Open MPI 3.0. SimpleMOC
was configured according to the recommended small problem size and then scaled in
terms of azimuth values (32) and height (1200) to expand the problem size to the
MCDRAM capacity on the KNL. The KNLs were run in quad mode with 100% of
MCDRAM operating in cache mode.

The results of this testing are shown in Figure 6. We can observe that finepoints
provides a significant improvement in application performance in both communication
time and application total runtime compared to the single-send model optimized
version of SimpleMOC. SimpleMOC supports varying numbers of threads in its main
compute loop, and we present results using a sweep from 64 threads to 256 threads
on each of the 4 KNL nodes.

For the noise controlled runs, communication time improvement sees a low point
of 18.5% at 256 compute threads and 10% noise, and it peaks at 26.1% at 64 compute
threads and 2% noise. Application runtime improvement ranges from 2.6% for 64
compute threads and 0% noise to 4.8% with 128 compute threads and 2% noise.
Overall, both runtime and communication time improvements are relatively similar
over the ranges of artificial noise injection because of the nature of the communication
that occurs: the communication is small enough in size (approx. 130 MiB total) that
even small noise percentages allow good early-bird communication.

5 Related Work

There have been past attempts to integrate threading within MPI, such as FG-
MPT [13]. FG-MPI promoted threads to being the equivalent of MPI processes,
which while it allowed many concurrent threads, creates a large amount of state for
each thread/process. Other efforts have included work on providing benchmarks for
testing and profiling MPI RMA multithreaded behavior [8]. The general concept
of composing RDMA messages into a large transaction has been explored for
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application in unreliable datagram networks at the hardware level [9,17]. Similar
benchmarks have also been developed for other one-sided communication APIs like
OpenSHMEM [19]. Lastly, commercial MPI’s such as MPI/Pro, which were designed
for internal concurrency and the option of blocking completion notification (to avoid
polling), are no longer widely available [4].

Message aggregation is a well known method for networks, having been explored
for one-sided communication methods [12], these methods are also common with
TCP/Ethernet networking.

The MPI forum had a proposal before it to enhance support for threads through
endpoints [5], in which each thread can be assigned a unique rank in an endpoint
communicator. However, endpoints never attempted to address the underlying
communication model, only add the ability to address messages to specific threads.
This work differs from previous efforts by the requirements it places on applications and
the corresponding decrease both in resources needed by MPI and in synchronization
overhead achieved.

6 Conclusions and Future Work

In this work, we introduced finepoints, a partitioned buffer communication two-sided
approach for MPI. Partitioned sends allow data to be transmitted as completed by
the application, or else be aggregated by MPI. We discussed the existing concurrency
models in MPI and illustrated how desirable features of each model can be combined,
resulting in our design of finepoints. Providing threading support with partitioned
operations allows for ultra-low overhead thread safety that beats a current highly
optimized threading-optimized MPI implementation and fits the existing application
code methodologies. A prototype implementation that incorporates early-bird
communication provides up to 4.8% improvement in runtime and 26.1% improvement
in communications for a reactor physics neutron transport code. Furthermore, this
performance improvement did not require major application reformulation, unlike
MPT 1-sided communication (RMA).

Partitioned send is only a part of the overall finepoints concept. It is possible to
extend finepoints to receive-partitioning. Receive-side partitioning solves a different
problem than send-side partitioning; that is, it is an independent concept. The
flexibility of receive-side partitioning must be juxtaposed against the increased cost
of notification (with reduction of maximum message rate), making it a subject for
future study.
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