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Why don't we alL use DT for fusion and
Laser-plasma instability (LPI) studies?
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1840 uArgon Diagnosable, non-fl., dense 40 u

Hydrogen Cosmic abundance Unique 2 u 1 u 1

DT Ideal fusion fuel 2-component 5 u 2.5 u 1

Deuterium Non-radioactive fusion fuel Unique 4 u 2 u 1

Helium Non-flammable, rel. low Z Unique 4 u 4 u 2

Neopentane High density, rel. Low Z 2-component 72 u 4.24 u 2.47

Ion Diversity:

• Potential isotope
separation can effect LPI
in general.

• Multiple co-existing ion-
acoustic wave modes can
effect stimulated Brillouin
scattering.

Initial conditions:

Thickness and deformation
of the laser-gas barrier are
determined by the initial
pressure, which depends on
the molecular mass.

Dominant effects:
• Density of barrier plasma
• Spatial distribution of

plasma interfaces
• Laser absorption losses in

ba rrier

Thermal rarefaction:

Plasmas can expand at significantly
different rates based on ion weight.
Example: highly collisional plasma of
" 1 kev temperature.
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Strong effects if plasma is not confined
or if it is filamented. Isotope separation?

Landau damping:

Strong for ions near the
phase velocity of an ion-
acoustic wave.

MIS 11,

Stimulated Brillouin Scatter:

(Weakly) dependent on the
ion charge state.

Sensitive to charge over
mass, particularly with
partial ionization!
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Radiation
losses:

The bremstrahlung-absorption
coefficient:
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• proportional to the charge
state

• compensated with initial
gas/electron density (?)

Example: Pre Heat studies for magnetized Liner InertiaL Fusion with the Z Beamlet Laser at Sandia
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SBS Generation and laser propagation depth with and

without Distributed Phase Plate (DPP, 750 p.m diameter)

for focus conditioning.
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No DPP: High LPI-case with decreased SBS for

deuterium, likely due to Landa damping. Absorption/

length matched by pressure variation..
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7501.1m DPP: Low LPI-case with decreased SBS for
helium most likely due to lower pressure.

Blast wave edge is sharper for D2,

possibly because of different ionic

mean free paths.
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Summary:
Even the seemingly very similar gases
He and D2 vary appreciatively, and the
differences depend on the LPI regime
the laser encounters!
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