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2 Some Problem Scenarios Requiring Efficient/Local Inference

Application Relevant Constraints

Smartphones

Autonomous Vehicles

Supercomputing

Security Systems on Backup Power

Imaging Satellites

power, latency, bandwidth

latency

thermal

power, interference

power, bandwidth

Micro-Drones

Autonomous Hypersonics

Nuclear Reactor Emergency Maintenance

power, latency, bandwidth, interference

latency, interference

power, thermal, interference

Advanced Neuroprosthetics power, latency, thermal, privacy



3 I Platforms Offering Efficient Low-Power Inference
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4 Some Challenges Porting "Traditional" Deep Nets to Spiking Hardware

Spiking Hardware is Typically Designed for Neuro-Simulation.

Traditional ANNs Spiking Nets

Continuous Activations

Global Clock-Driven Synchrony

Dense Matrix/Tensor Representations

Discrete/Binary "Spikes"

Local Event-Driven Asynchrony

Sparse Synapse/Neuron Representations

Floating-Point Weight Precision

Individual "Neuron" Biases

Batch Normalization Layers

Weights Often Fixed-Point

(Often Shared) Firing Thresholds

???

.



5 I SpiNNaker (Case Study)

Optimized for biological real-time execution
("time models itself").

Run spiking networks with biological timing
and topological constraints.

• Well suited to robotics applications.

Event-driven.

Locally synchronous, globally asynchronous.

Multicast packets with fixed routing tables.

"SpiNNaker comes into its own when a
problem can be cast into a form that requires
many, many tiny asynchronous messages..."
[6].
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6 High-Throughput Binary-MNIST on SpiNNaker

[input(785) -> dense(100) -> dense(100) -> dense(100)] x 190 Tiles

Between-Sample Delay: 2 miliseconds.

With Instant Decay Neuron AAA

time scale factor: 5.0

Cores per tile: 4

(1 per pop/layer including spike-source-array)

Core Usage: 760/760

Chips Usage: 48

Total Neurons: 57,000

Total Synapses: 97,617*190 = 18,547,230

Total runtime: 7:09 (includes setup, routing, and I/0)

Samples processed: 10,000

Samples per core: 52 -> 53

Inference time: 0.657 seconds.

Throughput: —15,317 samples/second 

Accuracy: —94%
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7 Convolutional Binary-MNIST on SpiNNaker

[Input(785) -> conv2d((5x5), 32) -> maxpool2d((2x2)) -> conv2d((5x5), 64) -> maxpool2d((2x2)) -> dense(500) -> dense(100)] x 1 Tile

time scale factor: 14.0 

Temporal Groups: 20 

Max-Neurons/Core: 255

Between-Sample Delay: 2ms * tsf = 28ms real-time.

Cores per tile: 371

Cores Used: 371/760 —49%

Chips Used: 28/48 —58%

Total Neurons: 47,640

Total Synapses: —2,596,432

Samples processed: 10,000

Samples per tile: 10,000

Total runtime: 1:22:39 hours:minutes: seconds

(includes setup, routing, and I/0)

Inference time: 51:21 minutes:seconds

Throughput: —3.25 samples/second

Latency: 1.694 seconds.

Accuracy: 98.10% 
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8 I Porting Deep Nets to SpiNNaker using Whetstone (Overview)

11115-efine Model
(Keras)

Standard
"- Training

111 Sharpen
Layer 1

• • •

44

WH ETSTON E

Lrvaluate
formance

Convert to PyNN Representation and Load to

SpiNNaker using SpyNNaker Library

(Optional) Use Propagation Delays to Define Temporal

Groups for Time-division Multiplexing

Alk
Replace Biases with Bias Neurons

Alk
Convert from Tensor to Sparse Representation

Remove Batch Normalization Layers

ANN with Binary Quantized
Activations and Batch
Normalization Layers



9 I From Continuous Activations to Binary

Traditional ANNs Spiking Nets

Continuous Activations Discrete/Binary "Spikes"

Define Model
Zips) .•

f

Standard
Training

1

1
Sharpen
Layer N

4IM IMM 11 1=1

Output Model
(Keras)

WHETSTONE

Evaluate
PerformanceIz i

Evaluate
s Performance

During training, activations are gradually sharpened one-layer-
at-a-time, starting with the first.

The rate of sharpening can be determined adaptively based
on changes in the loss.

Result is a binary-activation quantized version of the original
network, which can be directly run in many kinds of
neuromorphic hardware.

These networks allow "single-pass inference", where multiple
c`wave-fronts" can pass through the net simultaneously. This
provides advantages in throughput, latency, and possibly
energy usage, relative to rate-coded methods which must
accumulate spikes for some period of time.



10 I How Whetstone Works (Animation GIF Format)

=

5
i 1

7.

„

••

Epoch: 0

Batch: 0

Acc: 0.4471

SpkAcc: 0.0999

Slope: 1.0

Legend for bars: 

White: Spiking Accuracy

Green: Non-Spiking Accuracy



11 Removing Batch Normalization Layers

Traditional ANNs Spiking Nets

Batch Normalization Layers ???

•

BN (xi) = y (xi — (1)
O-B+E

One problern with batch normalization is that the moving averages of the normalization parameters are
left in the model after training is complete. This Ieaves us with four extra parameters for each neuron that
are used in determining pre-activations. Before we can export the model parameters to spiking hardware,
is it necessary to remove these extra parameters. To accomplish this, we merge them into the weights and
biases of each neuron usinta (2) and (3).

NewWeights (wi) = wi (  7 (2)
(77+E

(  N )ewBias (b 7 i) = (hi — lu)+ (3)
Cr+E



12 I From Tensors to Neurons

Traditional ANNs Spiking Nets

Dense Matrix/Tensor Representations Sparse Synapse/Neuron Representations

Gotcha 

The biological interpretation of convolution

requires a number of neurons equal to the size

of the output tensor.

4a/ Layers can be converted to

PyNN populations



13 Impact of Reduced Precision Weights

Traditional ANNs Spiking N

Floating-Point Weight Precision Weights Often Fixed-Point

Table 1. Accuracy of sharpened and non-sharpened networks at reduced precision. Presented are the
rnean and range of accuracies for MNIST across ten sample networks each of two types. Dense networks
had two hidden layers (512 neurons each) and a 10-hot output encoding. A small convolution network
was chosen to give realistic, but consei-vative estimates of degradation. The topology consists of two
Convolution-MaxPool blocks and three dense layers before a 10-hot output layer.

Precision Mean
Spiking

Range
Non-Spiking

Mean Range

Dense

float32
Q4.16
Q4.8
Q4.7
Q4.6
Q4.5

0.9794
0.9794
0.9786
0.9773
0.9712
0.8679

[0.9784,0.982(1]
[0.9777,0.9821]
[0.9772, 0.9803]
[0.9757, 0.980(1]
[0.9673, 0.9742]
[0.7732, 0.92(17]

0.9854
0.9854
0.9849
0.9842
0.9798
0.8922

[0.9837,0.9865]
[0.9838,0.9865]
[0.9836,0.9866]
[0.9834,0.9855]
[0.9774,0.9827]
[0.8385,0.9447]

Convolution

float32
Q4.16
Q4.8
Q4.7
Q4.6
Q4.5

0.9815
0.9815
0.9815
0.9802
0.9754
0.9306

[0.9791,0.9836]
[0.9789, 0.9835]
[0.9797,0.9838]
[0.9782,0.9817]
[0.9714, 0.9795]
[0.8867, 0.9482]

0.9905
0.9905
0.9905
0.9902
0.9884
0.9752

[0.9896, 0.9914]
[0.9896, 0.9914]
[0.9897,0.9915]
[0.9894,0.9916]
[0.9871,0.9899]
[0.9639,0.9813]



14 Translating Biases

Traditional ANNs Spiking Nets

Individual "Neuron" Biases (Often Shared) Firing Thresholds

Gotcha 

Though one can interpret biases as firing thresholds,

PyNN and SpiNNaker make this approach impractical

since thresholds are typically shared across all neurons

of a given population.

An alternative is to create a network of explicit bias
neurons. Bias neurons are daisy-chained from layer-to-

layer, with the first layer requiring an additional input

to start it off.

bias
n eu ron



1 5 Time-division Multiplexing (i.e.Temporal Groups)I L—M

Traditional ANNs Spiking Nets

Global Clock-Driven Synchrony Local Event-Driven Asynchrony

Gotcha 

Binary-activation ANNs require global

synchrony to produce correct one-shot output.

However, their real-time simulation produces

synchronous bursts of activity which can

overload the communications fabric, breaking

global synchrony. Time-division multiplexing

using propagation delays is one way to mitigate

this problem, but has performance tradeoffs.

Gotcha 

Sustained global synchrony is not guaranteed:

"Relative drift between boards is possible due

to slight variations in clock speed (from clock

crystal manufacturing variability), however, this

effect is small relative to simulation times..."



16 Time-division Multiplexing (Animation)
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17 I Time-division Multiplexing (Why it Works)

• While SpiNN aker processes synaptic events
asynchronously, neuron state updates are local
clock-driven synchronous, which we take
advantage of to approximate global synchrony.

• When a firing event is generated by a neuron,
SpiNNaker immediately transmits the spike
packet to the destination cores where it waits in a
ring buffer for a time determined by the
propagation delay.

• Rather than having all neurons of a presynaptic
population fire concurrently, we stagger their
firing and use delays to ensure all synaptic events
from the source population induce a membrane
potential at the correct time-increment. Thus,
while firings of source population neurons are
not synchronous, their effects downstream are.

• Basically, the ring buffers are repurposed to
reduce packet congestion.

Arrow

ProftAg0

b g uwn

grey I

Time at
which

neurorkorc
sends
packet I VI

•

2
3
4

5
6

9



18 I Time-division Multiplexing (Caveats)

• In SpiNN aker, delays greater than 10ms are too long for the ring buffers and so require the use of the
"DelayExtentionVertex" application, which effectively doubles the required cores/neurons. This also causes
the spike source array to be split over many cores like a normal population.

• The maximum delay induced by multiplexing is (K*2 - 1), where K is the number of temporal groups. Thus,
a maximum of 5 temporal groups can be employed without invoking the above mechanism.

• The maximum number of temporal groups supported should be 72 based on the following: "While this
application solves the problem of simulating extended delays, it cannot do so indefinitely and an effective new
upper limit of 144 delta-t is enforced due to DTCM constraints."

The need to increase the time-scale-factor from 5 to 14 may be due to the following: 'An additional row
must be included to identify spikes traveling directly from the presynaptic core, and also those sent from each
individual delay stage of the delay extension. This increased master population table size can be costly to
search, and detrimental for real-time performance (see section 4.2)."



19 I Future Work

• Real-time I/O: We'd like to characterize the latency and throughput when using alternatives to the
SpikeSourceArray and potentially also play with the SpiNN-Link interface. Currently: "Each chip
additionally has an Ethernet controller, although in practice only one chip is connected to the
Ethernet connector on each board... Communication with other chips on a board from outside of
the machine must therefore go via the Ethernet chip; system-level packets are used to effect this
communication between chips."

• Looking into new input encoding methods. For example: reduced-precision binary coding of
inputs. Input layer channels split into binary at desired precision and each connection weight is
divided logarithmically between the resulting new connections (kudos to Mike Davies for
suggesting the general concept). This has been tested in Tensorflow but not yet on SpiNNaker.
Hopefully it'll be able to handle the increased demand on I/O.

• Laterally connected pseudo-recurrent tiles for image processing.

Further experiments to better understand communication bottlenecks of the current version.
Also, we've heard the SpiNNaker 2.0 prototype is clocked at 500MHz [3] which is 2.5 times that of
the current version.
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21 I Thanks!

Questions?



22  SpiNNaker (Hardware Overview)

Chip Hardware Specs: 

• 18 ARM968 cores clocked at 200MHz (5ns/instruction)

• Current chips are implemented in UMC 130 nm silicon. [6]

• "Each chip uses up to 1W when all the processors are fully utilized, ..." [2]

• 32kB ITCM (Instruction Tightly Coupled Memory) per core.

64kB DTCM (Data Tightly Coupled Memory) per core.

• 128MB shared SDRAM per chip. (1Gbit)

5ns/word DTCM access speed (word = 32 bits) (entire read start-to-finish takes just
1 instruction).

100ns/word SDRAM access via bridge, subject to contention with other cores.

10ns/word SDRAM -> DTCM DMA transfer after fixed overhead (>= 15ns),
independent of processor.

• 200ns packet routing time for on-chip router.

SpiNN-5 48-chip Board: 

• "We budget for the nodes dissipating up to 1W, and with other components a board
will dissipate up to 75W." [7]
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