This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 3295C

Low-Power Deep Learning
Inference using the SpiNNaker
Neuromorphic Platform

ol PN Z Tl e
* @ : L

PRESENTED BY

Ryan Dellana

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 I Some Problem Scenarios Requiring Efficient/Local Inference

Application Relevant Constraints

Smartphones

Autonomous Vehicles

Supercomputing

Security Systems on Backup Power
Imaging Satellites

Micro-Drones

Autonomous Hypersonics

Nuclear Reactor Emergency Maintenance

Advanced Neuroprosthetics

power, latency, bandwidth

latency

thermal

power, interference

powet, bandwidth

power, latency, bandwidth, interference
latency, interference

power, thermal, interference

power, latency, thermal, privacy

3 I Platforms Offering Efficient Low-Power Inference

Continuous

NVIDIA Jetson TX1-2

Intel Movidius

FEld 1=

Google TPU

Deep ANNSs

Native

0292

IBM TrueNorth

SNL STPU

4 I Some Challenges Porting “Traditional” Deep Nets to Spiking Hardware

* Spiking Hardware 1s Typically Designed for Neuro-Simulation.

Traditional ANNSs Spiking Nets

Continuous Activations Discrete/Binary “Spikes”

Global Clock-Driven Synchrony Local Event-Driven Asynchrony

Dense Matrix/Tensor Representations Spatse Synapse/Neuron Representations
Floating-Point Weight Precision Weights Often Fixed-Point

Individual “Neuron” Biases (Often Shared) Firing Thresholds

Batch Normalization Layers °r?

5

SpiNNaker (Case Study)

'-"’“'”H"_E'zihhi' "””“i"HH'H" it dittiiiid

*Optimized for biological real-time execution
(“tme models itself ™).

*Run spiking networks with biological timing [N NEEEE:IERSS THIT] =
and topological constraints. | i JD ;N

* Well suited to robotics applications.

. Event—driveﬂ. G P AT Router

* Locally synchronous, globally asynchronous.

R
 ERBRRERRE
AERERRRDR

* Multicast packets with fixed routing tables.

* “SpiNNaker comes into its own when a
problem can be cast into a form that requires ;| EGEEEENEN - I . i MY
many, many tiny asynchronous messages...” *|i§ Wl | =

6],

IREEEELE
SRR RRERRRD

6 I High-Throughput Binary-MNIST on SpiNNaker

[input(785) -> dense(100) -> dense(100) -> dense(100)] x 190 Tiles

Between-Sample Delay: 2 miliseconds.

With Instant Decay Neuron ™"
time_scale_factor: 5.0
Cores per tile: 4

(1 per pop/layer including spike-source-array)
Core Usage: 760/760
Chips Usage: 48
Total Neurons: 57,000
Total Synapses: 97,617%190 = 18,547,230
Total runtime: 7:09 (includes setup, routing, and 1/O)
Samples processed: 10,000

-
= - -
ra
- e o Ea3 - e e
- e - = - = =
[L]
-

£1930 15°IMQ

=
=
=
W
=
=

=
o
-
=
1]
=
5]
=
a
e
P
A
-

CEOER I [EE=—ir=il (i frs ey,

Samples per core: 52 -> 53

Inference time: 0.657 seconds.
Throughput: ~15,317 samples/second
Accuracy: ~94%

7 I Convolutional Binary-MNIST on SpiNNaker

[Mnput(785) -> conv2d((5x5), 32) -> maxpool2d((2x2)) -> conv2d((5x5), 64) -> maxpool2d((2x2)) -> dense(500) -> dense(100)] x 1 Tile

time scale factor: 14.0

Temporal Groups: 20

Max-Neurons/Core: 255

Between-Sample Delay: 2ms * tst = 28ms real-time.

Cores per tile: 371

Cores Used: 371/760 ~49%

Chips Used: 28/48 ~58%

Total Neurons: 47,640

Total Synapses: ~2,596,432

Samples processed: 10,000

Samples per tile: 10,000

Total runtime: 1:22:39 hours:minutes:seconds
(includes setup, routing, and 1/O)

Inference time: 51:21 minutes:seconds

Throughput: ~3.25 samples/second

Latency: 1.694 seconds.

Accuracy: 98.10%

Ll
g

.
- LT
i
L
e
-y
-

=
T

M IR i [

2
o
oy
-
(=]
iy
(3]
s
(7

=
=
=
o
=
.

-
-
-
x
]
=
i
=
o
w
-
-
-

e g [o | et
o - T A, =T
W e | s =

o

5

S TED IEN NN NI NEN NN NN NED NN NN N NN NN RN S Sy,

I

Training
Whetstone / Keras

8

Porting Deep Nets to SpiNNaker using Whetstone (Overview)

Convert to PyNN Representation and Load to
SpiNNaker using SpyNNaker Library

f

(Optional) Use Propagation Delays to Define Temporal
Groups for Time-division Multiplexing

WHETSTONE

f

Replace Biases with Bias Neurons

*

Convert from Tensor to Sparse Representation

f

Remove Batch Normalization Layers

ANN with Binary Quantized

Activations and Batch
Normalization Layers

| w

From Continuous Activations to Binary

Traditional ANNs Spiking Nets I

9

Continuous Activations Discrete/Binary “Spikes”

» During training, activations are gradually sharpened one-layer-
at-a-time, starting with the first.

* The rate of sharpening can be determined adaptively based
on changes in the loss.

* Result 1s a binary-activation quantized version of the original
network, which can be directly run in many kinds of I

Training
Whetstone / Keras

neuromorphic hardware.

* These networks allow “single-pass inference”, where multiple
“wave-fronts” can pass through the net simultaneously. This
_____ provides advantages in throughput, latency, and possibly
energy usage, relative to rate-coded methods which must
accumulate spikes for some period of time.

’--_------R

|

How Whetstone Works (Animation GIF Format)

Legend for bars:

55555555 i
Green: Non-Spiking Accuracy

11

Removing Batch Normalization Layers

Traditional ANNs Spiking Nets

Batch Normalization Layers 77

OB + €

One problem with batch normalization is that the moving averages of the normalization parameters are
left in the model after training is complete. This leaves us with four extra parameters for each neuron that
are used in determining pre-activations. Before we can export the model parameters to spiking hardware,
1S 1t necessary to remove these extra parameters. To accomplish this, we merge them into the weights and
biases of each neuron using (2) and (3).

BN(.rf-):y('r"_“’B)jtﬁ (1)

NewWeights(w;):wf(Y) (2)
C-+e

NewBias (b;) = (0_18) (bi—u)+p (3)

12 I From Tensors to Neurons

Traditional ANNs Spiking Nets

Dense Matrix/Tensor Representations Spatse Synapse/Neuron Representations

; “ g GOtCha

The biological interpretation of convolution

requires a number of neurons equal to the size

of the output tensor.

Layers can be converted to

PyNN populations

13 | Impact of Reduced Precision Weights

Traditional ANNs Spiking Nets

Floating-Point Weight Precision Weights Often Fixed-Point

Table 1. Accuracy of sharpened and non-sharpened networks at reduced precision. Presented are the
mean and range of accuracies for MNIST across ten sample networks each of two types. Dense networks
had two hidden layers (512 neurons each) and a 10-hot output encoding. A small convolution network
was chosen to give realistic, but conservative estimates of degradation. The topology consists of two
Convolution-MaxPool blocks and three dense layers before a 10-hot output layer.

Spiking Non-Spiking
Precision Mean Range Mean Range

float32 0.9794 [0.9784,0.9820] 0.9854 [0.9837,0.9865]

Q4.16 0.9794 [0.9777,0.9821] 0.9854 [0.9838,0.9865]

Dense Q4.8 0.9786 [0.9772,0.9803] 0.9849 [0.9836,0.9866]
Q4.7 0.9773 [0.9757,0.9800] 0.9842 [0.9834,0.9855]

Q4.6 0.9712 [0.9673,0.9742] 0.9798 [0.9774,0.9827]

Q4.5 0.8679 [0.7732,0.9207] 0.8922 [0.8385,0.9447]

float32 0.9815 [0.9791,0.9836] 0.9905 [0.9896,0.9914]

Q4.16 0.9815 [0.9789,0.9835] 0.9905 [0.9896,0.9914]

Convolution Q4.8 0.9815 [0.9797,0.9838] 0.9905 [0.9897,0.9915]
Q4.7 0.9802 [0.9782,0.9817] 0.9902 [0.9894,0.9916]

Q4.6 0.9754 [0.9714,0.9795] 0.9884 [0.9871,0.9899]

Q4.5 0.9306 [0.8867,0.9482] 0.9752 [0.9639.0.9813]

14 I Translating Biases

Traditional ANNs Spiking Nets

Individual “Neuron” Biases (Often Shared) Firing Thresholds

Gotcha

Though one can interpret biases as firing thresholds,
PyNN and SpiNNaker make this approach impractical
since thresholds are typically shared across all neurons

of a given population.

An alternative is to create a network of explicit bias

neurons. Bias neurons are daisy-chained from layer-to-
layer, with the first layer requiring an additional input
to start it off.

15

Time-division Multiplexing (i.e. Temporal Groups)

Traditional ANNSs Spiking Nets

Global Clock-Driven Synchrony

Gotcha

Binary-activation ANNSs require global
synchrony to produce correct one-shot output.
However, their real-time simulation produces
synchronous bursts of activity which can
overload the communications fabric, breaking
global synchrony. Time-division multiplexing
using propagation delays is one way to mitigate
this problem, but has performance tradeofts.

Gotcha

Sustained global synchrony is not guaranteed:
"Relative drift between boards is possible due
to slight variations in clock speed (from clock
crystal manufacturing variability), however, this
effect is small relative to simulation times..."

Local Event-Driven Asynchrony

Time at
which
neuron/core
sends

Merwwy el indicates)

prisgaggtiomdelay,

Dethy assumeditobe:
packet

Ynsibbd By regeiving:
nennorong,

white

A e e *’f sy,
NS, T LRy SN e
NS T T A S o e Sied P

£
i
Y

A

RN
i zﬁ?
N
e

\
t"
Ay

B

N

v‘
)
b

L ok 5
e e -

‘ﬁf‘f-f;&.-#"/
e T
B T T
e :{"(_j

A
|

ot
‘f
7

7

‘;’%}_

e
SRR T SRy
eyl TR

g Tl e

S RN R,
Lol

RN ; %ig' ’M‘h
W_\E%}:}“r :J”'g”i’m

anaa\ww Z2
SN\

* While SpiNNaker processes synaptic events
asynchronously, neuron state updates are local
clock-driven synchronous, which we take
advantage of to approximate global synchrony.

* When a firing event is generated by a neuron,
SpiNNaker immediately transmits the spike
packet to the destination cores where it waits in a
ring buffer for a time determined by the
propagation delay.

* Rather than having all neurons of a presynaptic
population fire concurrently, we stagger their
firing and use delays to ensure all synaptic events
from the source population induce a membrane
potential at the correct time-increment. Thus,
while firings of source population neurons are
not synchronous, their effects downstream are.

* Basically, the ring buffers are repurposed to
reduce packet congestion.

Time at
which
neuron/core
sends
packet

Arrow colon indicates

\ propagation delay.,

4 Delay assumed|tobe:

handled by receiving
ReWren/Cone;,

orange

yellow

18 I Time-division Multiplexing (Caveats)

* In SpiNNaker, delays greater than 10ms are too long for the ring buffers and so require the use of the
“DelayExtentionVertex” application, which effectively doubles the required cores/neurons. This also causes
the spike source array to be split over many cores like a normal population.

* The maximum delay induced by multiplexing is (IKK*2 - 1), where K is the number of temporal groups. Thus,
a maximum of 5 temporal groups can be employed without invoking the above mechanism.

* The maximum number of temporal groups supported should be 72 based on the following: “While this
application solves the problem of simulating extended delays, it cannot do so indefinitely and an effective new
upper limit of 144 delta-t is enforced due to DTCM constraints.”

* The need to increase the time-scale-factor from 5 to 14 may be due to the following: “An additional row
must be included to identify spikes traveling directly from the presynaptic core, and also those sent from each
individual delay stage of the delay extension. This increased master population table size can be costly to
search, and detrimental for real-time performance (see section 4.2).”

19

Future Work

* Real-time 1/O: We'd like to characterize the latency and throughput when using alternatives to the
SpikeSourceArray and potentially also play with the SpiNN-Link interface. Currently: “Each chip
additionally has an Ethernet controller, although in practice only one chip is connected to the
Ethernet connector on each board... Communication with other chips on a board from outside of
the machine must therefore go via the Ethernet chip; system-level packets are used to effect this
communication between chips.”

* Looking into new input encoding methods. For example: reduced-precision binary coding of
inputs. Input layer channels split into binary at desired precision and each connection weight 1s
divided logarithmically between the resulting new connections (kudos to Mike Davies for
suggesting the general concept). This has been tested in Tensorflow but not yet on SpiNNaker.
Hopefully it’ll be able to handle the increased demand on I/O.

* Taterally connected pseudo-recurrent tiles for image processing.
y p gep g

* Further experiments to better understand communication bottlenecks of the current version.
Also, we’ve heard the SpiNNaker 2.0 prototype 1s clocked at 500MHz [3] which 1s 2.5 times that of

the current version.

20

SpiNNaker (References)
[1] Rhodes, Oliver, et al. "sPyNNaker: A Software Package for Running PyNN Simulations on SpiNNaker." Frontiers in
neuroscience 12 (2018).

[2] Rowley, Andrew GD, et al. "SpiNNTools: the execution engine for the SpiNNaker platform." arXiv preprint
arXiv:1810.06835 (2018).

[3] Liu, Chen, et al. "Memory-efficient Deep Learning on a SpiNNaker 2 prototype." Frontiers in neuroscience 12 (2018).

[4] Temple, Steve. "SARK - SpiNNaker Application Runtime Kernel"
(http:/ /spinnakermanchester.github.io/docs/sarkV200.pdf) (2016)

[5] Serrano-Gotarredona, Teresa, et al. "ConvNets experiments on SpiNNaker." Circuits and Systems (ISCAS), 2015 IEEE
International Symposium on. IEEE, 2015.

[6] Brown, Andrew, et al. "SpiNNaker-programming model." IEEE Transactions on Computers 1 (2015): 1-1.

[7] Furber, Steve B, et al. "Overview of the spinnaker system architecture." IEEE Transactions on Computers 62.12 (2013):
2454-2467.

[8] "SpiNNaker datasheet version 2.02 6 January 2011"
(http://spinnakermanchester.github.io/docs/SpiNN2DataShtV202.pdf) (2011)

21 I Thanks!

Questions?

22

SpiNNaker (Hardware Overview)

Chip Hardware Specs:

*18 ARMI68 cores clocked at 200MHz (5ns/instruction)

* Current chips are implemented in UMC 130 nm silicon. [0]

*“Each chip uses up to 1W when all the processors are fully utilized, ...” [2]
*32kB ITCM (Instruction Tightly Coupled Memory) per core.

*64kB DTCM (Data Tightly Coupled Memory) per core.

*128MB shared SDRAM per chip. (1Gbit)

*5ns/word DTCM access speed (word = 32 bits) (entite read start-to-finish takes just
1 instruction).

*100ns/word SDRAM access via bridge, subject to contention with other cores.

*10ns/word SDRAM -> DTCM DMA transfer after fixed overhead (>= 15ns),

independent of processor.
*200ns packet routing time for on-chip router.

SpiNN-5 48-chip Board:

*“We budget for the nodes dissipating up to 1W, and with other components a board
will dissipate up to 75W.” [7]

IR R R R

H‘HH’ ”“‘“i Hiti N

'HHH ‘”HH'

il

R T

