
Resilience for Exascale Computing
and Beyond

PRESENTED BY

Keita Teranishi
40iiiROY IWSIA

Sandia National Laboratories is a rnultirnission
laboratory rnanaged and operated by National
Technology Et Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Departrnent of

Energy's National Nuclear Security
Adrninistration under contract DE-NA0003525.

SAND2019-3281C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

1 Resilience is necessary!
Applications should behave as expected.
Complete all iterations

(Produce correct output

(Finish all computations within a given time window

Hardware reliability is improving
How about system reliability?
How about the rate of successful application execution?
Is there any justifiable data to show the improvement of the reliability
of systems and applications?

Checkpoint/Restart (C/R) with the latest 10 subsystem technology
can handle some types of application failures
New types of failures

3 Different components have different reliability

HBM

High Bandwidth

Low Reliability

DDR

Low Bandwidth

High Reliability

Courtesy: AMD and UCSD Interposer

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

HBM DRAM Die

Logic Die

ijijiji
TITAT
VITIT
ijijiji
rararara

PHY PHY GPU/CPU/Soc Die
 • •Niv New

• al • ENI1411111111An •
Package Substrate

al • ID • IS ID al al al al ID al al

Different hardware components have different reliability
Different reliability per Components
CPU, GPU, HBM, DDR, NVRAM, Network

O Even for the same component type, reliability differs among different manufacturers

O How to manage complex interaction between components?

- Are errors and failures contained within a component?

O Which software component manage these? Runtime, OS or Middleware?

4 Resilience is not achieved just through redundancy.

RAID coNrROLLER5 DoN1-
riAKE SENSE ATOOR SCALE;
EVERYTHING 15 REDUCANT
AT HIGHER LEVELS. LJHEN
AVE FAILS, wE 505T THRou
Away THE LTHoLE• MACHINE.

MACHtNE? L.TE fiRcu
WAY wHOLE. RACKS
AT A

YERA, kmo
tEPLACE.5
ONC SERVO??

]

WE JOST REPLACE
WHoLE RooM5 AT
ONcE.
ME55iNo LJITH RAcKS
IsNr EcoNoMICAL.

6XAJ.
LIKE CCoGiEl

WE DoNT HAvE SPRINKLERS
OR INERT-GAS 5Ysit1`'15.
UHEN A DAT-ACarrER CANE5
FIRE, WE JUsr RceE
AND REI3VILD ONE MON 043.

MAKFS 5EN5E.

I WIND& IF THE RoPE
Is gERUY SIECEMARY.

From the single application perspective, large scale HPC system
already provide very good redundancy.
The question is how to serve extra resources to individual
applications while many other applications are sharing some
system resources (network and 10)

New memory and 10 technology exhibits complex tradeoffs of
performance and reliability

5 Resilience is not patch-work solution

Adding checkpoint/restart involves extra coding:
A couple of C/R library projects funded by ECP
Many library calls to bind application data to checkpoint storage

No HPC programming models embrace resilience/fault tolerance.

Recovery involves coordination with runtime, OS, middleware
and 10 subsystems.

Enterprise distributed computing already embraces resilience in
the programming model: e.g. RDD in Spark.

6 Resilience is essential for managing performance variability

PO

P1

P2

P3

Compute

Compute

Compute

MPI (Waiting for message)

MPI (Waiting for message)

MPI (Waiting for message)

Performance variability is a new type of system failure.
Trinity at LANL experienced a 25x slowdown of a single compute node
()Errors in a single bad DRAM module
()Took a few days to find the problem
0 MPI did not report any errors
Resulted in 25x application delays

C/R cannot handle this problem.

7 Is software resilient?

Anecdotes and some reports indicate that the majority
of failures are caused by software rather than hardware.
Network and Global file systems failing to handle corner
case situations

Bugs in application programs
User's mistake sometimes triggers failure in network and
middleware

Any software bugs manifested in an undeterministic manner
Application users see them as system failure

How to verify and quantify reliability/resilience of large scale
HPC systems?

Chip manufacturers have established a method for
verification and quantification of reliability and resilience
Formal method verification

How about interaction between different hardware
components?
Any methodology to quantify resilience?

How about software?
Traditional software testing methodology work for H PC?

Software and hardware interaction is eve n more complex.

9 Solution l : Embracing Resilience in Applications, Programming
Model, and Runtime

Build programming models and libraries should embrace resileince and
fault tolerance as well as performance portability

Examples:
Resilience support by Kokkos
Data and computation abstraction by Kokkos includes unreliable computation and
persistency of storage devices

Application domain specific framework and scientific libraries that
embrace resilience
O Resilient Scientific Libraries (sparse linear system solvers) Effort by INRIA Bordeaux
O Domain Specific Language with built-in fault tolerance capability in weather/climate
simulation applications (ESCAPE2 project)

Provide a better interface to OS, Middleware so that apps/runtime can see
the status of the system
O Better vertical integration for resilience
O Alternatives for "abort" (fault oblivious computation)

10 Solution 2:Dynamic scheduling of computation and resource
allocation

Programming model and middleware should support dynamic
scheduling for resource allocation and task/job placement

It's hard to imagine that 100% of compute nodes are occupied by applications.

Middleware and runtime systems should provide extra resource to a job that
is suffering from "local failures" if necessary

Examples:
. MPI-ULFM (Fenix), MPI Relnit

. Asynchronous Many Task Runtime

11 Solution 3:Quantify resilience and fault tolerance in system-
level

The community needs a methodology of quantifying resilience and
fault tolerance of computing systems beyond chips and individual
hardware components

How to extra patterns and structure of computing systems?
Resilient design patterns (by Engelmann) to extract the structure and
composition of HPC resilience
Containment Domains to accommodate hierarchical structure of
computing systems

How to evaluate/quantify?
Formal methods
Specification language and tools to create resilience and fault tolerance
abstractions
Simulation with abstract computing systems

