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Introduction 

➢ Displacement damage and ionization from energetic neutrons affect operation of electronics.

➢ Effects are greater for DT fusion neutrons than for fission neutrons (14 MeV vs — 1MeV).

➢ Tests are needed to characterize device response but few sources exist for 14 MeV neutrons.

➢ A facility for testing device response to 14 MeV neutrons
has been developed at the Sandia lon Beam Laboratory (IBL).
Deuterium ion beam onto titanium tritide target.

➢ Neutron production rate decreases with time
due to tritium loss from target by isotope exchange.

Outline:

➢ Description of system.

➢ Dosimetry

➢ Target lifetime optimization.
DT isotope exchange with rapid mixing by thermal diffusion.
Mixing model predicts target lifetime and neutron yield per target.

➢ Thin-film target design for extended lifetime and reduced tritium usage.

➢ New beamline/target chamber with smaller distance from n-source to test location.

➢ Examples of device tests
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Dosimetry
Ne
ut
ro
n 

pr
od
uc
ti
on
 r

at
e 
(1
01
9s
ec
) 0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.

.21
92 103

>
17,

1o2

0 50 100 150 200
Time (hours)

250 300 350

rpriliwojim
- Nb93(n,2n)Nb92m

— Ni58(n,np)Co57

— Ni58(n,p)Co58

— Ni58(n,2n)Ni57

— Zr90(n,2n)Zr89

0 50 100 150 200
Time (hours)

250 300

Alpha yield  measured by silicon detector

gives neutron production vs time

200

47T
(Tu

Yn Ya co 150_c
(Cfcm.

alab)a

Foil activity measured by gamma counting

agrees with values calculated from neutron flux

within 12% for 5 activation reactions (ASTM E496).

cx(b) @ E=14.1MeV half life(days)

Nb93(n,2n)Nb92m 0.459 10.13

Ni58(n,np)Co57 0.582 271

Ni58(n,p)Co58 0.354 71

Ni58(n,2n)Ni57 0.0249 1.48

Zr90(n,2n)Zr89 0.627 3.27

100
o

-o 50

Zj

T(D,a)n

J

0 200 400

Channel

600

CVD diamond detector (4x4x0.5 mm)

gives neutron flux vs time. Applied Diamond Inc.

4

c 3

cB
_c

2

o

1

0

800

2C(n,a)9Be

0 100 200 300

Channel

400 500

4 of 13



Effect of scattering on neutron energy spectrum from MCNP 

Neutron energy distribution
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Isotope exchange model for target lifetime thick target
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Neutron production rate decreases with time due to tritium loss from target.
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Target lifetime:

N = 1.6x102° atoms of T in target initially

cieN/2 = 13 Coulomb D2+

60 hours at 60 1..tA

cy N = 2.4x1015 neutrons per target
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N=NT+ND

>. Implanted D mixes with T in target

>. Total number of D+T atoms in target is constant
determined by stoichiometry and volume.

NT = N exp 
N

Npi)

>. Number of neutrons produced per incident D:
dNri NT

= exp 
NDi

 =
)

dNDi N

>. Number of neutrons produced:

= N (1 — exp
Npi))

Number of neutrons per target and target lifetime

are determined by the amount of tritium undergoing exchange.
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Target temperature is controlled at 150 °C during operation. 

➢ At room temperature (T < 50 °C), time for DT mixing by thermal diffusion

throughout 5 µm film is longer than the time for T loss by isotope exchange within 1 p.m range of D.

Concentration of T within 1 p.m and neutron production rate decrease more quickly.

➢ At T=150 °C diffusion is 200x faster, DT mixing by thermal diffusion throughout 5 p.m film is fast,

Concentration of T within 1 [..tm and neutron production rate decrease more slowly, i.e. longer

target lifetime. Also, thermal release of tritium is negligible at 150 °C.

➢ HDT profiles and film thickness measured by He4 elastic recoil detection

and Rutherford backscattering spectroscopy at the Sandia IBL confirm replacement of T by D.

Quartz viewer

for beam focusing

Thermocouple

D beam

Target
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Thin-film Target Development FY18/19 LDRD 
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Incident D goes through the tritide film, stops in the substrate and diffuses into the substrate.

Barrier prevents permeation of implanted D into the tritide film.

Initial yield from thin target is 86% of thick target. 3% of incident D stops in 0.4 µm tritide.

12x less tritium, lower T loss, longer target lifetime and increased neutron yield per target.
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D transport in materials - requirements for thin target design 
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Thin-film target performance 
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Result:
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New beamline/test chamber for higher n-fluence at test location 

A new beamline and target chamber optimized for testing effects
of 14 MeV neutrons on electronics is now in operation at the Sandia IBL.

Neutron fluence at test location increased —40x to >1014/cm2 per target
by decreasing distance from source to test location from 7.6 to 1 cm.
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Examples of tests being done at Sandia

1. Gain change from displacement damage (HEART 2018) and HVB from single collision events in 111-V HBTs.

2. Stuck bits and SEUs in highly-scaled CMOS SRAMs (N. Dodds, 1.1 Friday)

3. Damage in Si Photodiodes (B. Aguire, I.2 Friday)

4. Photocurrent pulse amplitude in GaN HV diodes (in progress).

5. Qualification of COTS parts for NW systems.

16 Npn HBTs
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test at the Sandia IBL
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Displacement damage within small sensitive

region of device reduces device gain.

Defect reactions (annealing) cause transient

gain recovery.
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Su mmary

r 14 MeV neutrons are being produced at the Sandia IBL for testing effects on electronics.

r Thick-film targets produce > 2x1015 neutrons/target with an initial rate of >1010/sec.

r Neutron production rate decreases with time due to tritium loss from target by isotope exchange
with implanted deuterium. Target life scales with the quantity of tritium, agrees with mixing model.
Target temperature of 150 °C needed for full lifetime from 51..tm thick titanium tritide film.

r New thin-film target design with permeation barrier for longer life with less tritium has been
developed.

r New beamline/target chamber provides higher neutron flux (-5x108/cm2/s)
and fluence (1014/cm2/target) at test location.

r This new facility is in use for evaluation and qualification of device response to 14 MeV neutrons.
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