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Introduction

Displacement damage and ionization from energetic neutrons affect operation of electronics.
Effects are greater for DT fusion neutrons than for fission neutrons (14 MeV vs ~ 1MeV).

Tests are needed to characterize device response but few sources exist for 14 MeV neutrons.

vV V V V

A facility for testing device response to 14 MeV neutrons
has been developed at the Sandia lon Beam Laboratory (IBL).
Deuterium ion beam onto titanium tritide target.

» Neutron production rate decreases with time
due to tritium loss from target by isotope exchange.

Outline:
» Description of system.
» Dosimetry

» Target lifetime optimization.
DT isotope exchange with rapid mixing by thermal diffusion.
Mixing model predicts target lifetime and neutron yield per target.

Y

Thin-film target design for extended lifetime and reduced tritium usage.

A\

New beamline/target chamber with smaller distance from n-source to test location.

» Examples of device tests




Test Setup

_ chamber NuCAL test chamber designed
270 keV D," ion beam wall for calibrating neutron monitors has
focused and rastered : -(Ij-eei;cice target at center of 6” diameter chamber.
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Dosimetry
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Effect of scattering on neutron enerqy spectrum from MCNP

Horizontal cross-section view
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Scattered neutrons should have
minimal effect on dosimetry foil activation
and damage to devices

Neutron energy distribution
7.6 cm from source, 90° from D beam direction
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Isotope exchange model for target lifetime — thick target

Neutron production rate decreases with time due to tritium loss from target.
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270 keV 60 pA D,*
on 2 cm x 5 um thick target
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. Coulomb of D,*
Target lifetime:

Implanted D mixes with T in target

Total number of D+T atoms in target is constant
determined by stoichiometry and volume.

Np;
Ny =N — )
R
Number of neutrons produced per incident D:
dN,  Np ( NDi)
dNDi—aN—aexp N

Number of neutrons produced:

N, = 7N (1 — exp <; A‘;’))

N = 1.6x10%° atoms of T in target initially 1 7
q.N/2 = 13 Coulomb D,* Number of neutrons per target and target lifetime
60 hours at 60 pA are determined by the amount of tritium undergoing exchange.

o N = 2.4x10%° neutrons per target
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Target temperature is controlled at 150 °C during operation.

> At room temperature (T < 50 °C), time for DT mixing by thermal diffusion
throughout 5 pm film is longer than the time for T loss by isotope exchange within 1 um range of D.
Concentration of T within 1 pum and neutron production rate decrease more quickly.

» At T=150 °C diffusion is 200x faster, DT mixing by thermal diffusion throughout 5 pum film is fast,
Concentration of T within 1 pum and neutron production rate decrease more slowly, i.e. longer
target lifetime. Also, thermal release of tritium is negligible at 150 °C.

> HDT profiles and film thickness measured by He* elastic recoil detection
and Rutherford backscattering spectroscopy at the Sandia IBL confirm replacement of T by D.

\ Quartz viewer

Heater for beam focusing

Thermocouple

D beam
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Thin-film Target Development — FY18/19 LDRD

270 Kev D,*
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Purpose: Reduce tritium usage and increase target lifetime.

Incident D goes through the tritide film, stops in the substrate and diffuses into the substrate.

Barrier prevents permeation of implanted D into the tritide film.

Initial yield from thin target is 86% of thick target. 3% of incident D stops in 0.4 um tritide.
12x less tritium, lower T loss, longer target lifetime and increased neutron yield per target.

SAND2017-0854 (OUO)

S or 1>




Permeability (D/Metal atom/atm/2 cm?/s)

D transport in materials - requirements for thin target design

Substrate — High D permeation:

a) Good thermal conductivity (beam heating),
b) High D diffusivity.
c) Moderate D solubility, i.e.

not too low to avoid precipitation of implanted D
not too high to minimize tritium content from loading.

Candidates: Fe, Pd
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Uncertainty in permeability:
* Small values at low T are extrapolated
from measurements at higher T.
* Thin films may differ from bulk material.

Barrier — Low D permeation:

For target lifetime with 0.5 um tritide same as for
target with 5 um tritide, D flux through the barrier
layer must 10% of incident flux, i.e. 90% goes
through the substrate:
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Dashed lines depict D concentration in steady-state.

9 of 13



Thin-film target performance
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Result:

Neutron yield from thin-film Ti/W/Fe target 2.5x10%°
was greater than from 5 um thick-film target 2.2x10*>
with 12x less tritium.
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New beamline/test chamber for higher n-fluence at test location

A new beamline and target chamber optimized for testing effects
of 14 MeV neutrons on electronics is now in operation at the Sandia IBL.

Neutron fluence at test location increased ~40x to >10%4/cm? per target
by decreasing distance from source to test location from 7.6 to 1 cm.
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Examples of tests being done at Sandia

u b WN B

. Gain change from displacement damage (HEART 2018) and HVB from single collision events in IlI-V HBTs.
. Stuck bits and SEUs in highly-scaled CMOS SRAMs (N. Dodds, .1 Friday)
. Damage in Si Photodiodes (B. Aguire, |.2 Friday)
. Photocurrent pulse amplitude in GaN HV diodes (in progress).
. Qualification of COTS parts for NW systems.
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70 events in 16 devices from 2.7x1012 n/cm?
Black curve is the average.

Displacement damage within small sensitive
region of device reduces device gain.

Defect reactions (annealing) cause transient
gain recovery.

Active & passive device
test at the Sandia IBL

12 of 13



Summary

14 MeV neutrons are being produced at the Sandia IBL for testing effects on electronics.
Thick-film targets produce > 2x10'> neutrons/target with an initial rate of >10%%/sec.

Neutron production rate decreases with time due to tritium loss from target by isotope exchange
with implanted deuterium. Target life scales with the quantity of tritium, agrees with mixing model.
Target temperature of 150 °C needed for full lifetime from 5 pum thick titanium tritide film.

New thin-film target design with permeation barrier for longer life with less tritium has been
developed.

New beamline/target chamber provides higher neutron flux (~5x108/cm?/s)
and fluence (10%**/cm?/target) at test location.

This new facility is in use for evaluation and qualification of device response to 14 MeV neutrons.




