
Tracking Network Events with Write Optimized
Data Structures

Justin Raizes*, Evan West*, Thomas M Kroeger*, Brian Wight*, Cindy Phillips*, Jon Beny*,

Michael Bendert, Rob Johnsont
* Sandia National Labs {jraizes, ewest, tmkroeg, bjwrigh, caphill, jberry}@sandia.gov

t Stoney Brook University bender@cs.stonybrook.edu
t VMWare Labs rob@cs.stonybrook.edu

Abstract—The basic action of two IP addresses communicating
is still a critical part of most security investigations. Typically
security tools focus on logging torrents of security events. Some
more advanced environments will try to send the logs to a variety
of databases. Unfortunately, when faced with indexing billions of
events such databases are usually unable to keep up with the
rate of network traffic. As a result, security monitors typically
log with little to no indexing.

Write-optimized data structures (WODS) provides a novel
approach to traditional data structures. WODS use RAM to
aggregate multiple insertions into a single write and as a result
are able to ingest data 10 to 100 times faster while answering
queries in a timely manner. Using a write optimized B-Tree
known as a Be-tree we developed a tool (called Diventi) to index
layer 3 network activity from bro connection logs as well as
netflow data.

During both 2017 and 2018 Diventi was used by members of
the SCiNet network security team to investigate security incidents
and track activities of specific IP addresses and subnets. In 2017
we ingested bro connection logs indexing over 6 billion events at
rates above 104,000 events per second, and typically answering
queries in milliseconds. In 2018 we adapted our tool to index
based on netflow records, tapping directly into the network fabric
without the need of a security monitoring tool like bro. During
Super Computing 2018, we indexed over 4.3 billion events seeing
rates above 160,000 events per second. Moreover we monitored
the server and query performance and were able to show that
our servers CPU and I0 subsystem were barely taxed, with a
peak CPU usage of 47% acrosss the entire show. Our I0 in busy
periods was typically less than 10% of the systems capacity. For
queries with 2500 or fewer results our response times were less
than 100 milliseconds. In our worst case one query got almost 1
million results in about 7.6 seconds.
Index Terms—security, networking, indexing, write optimized,

IDS

I. INTRODUCTION

Advanced security monitoring must juggle two opposing
efforts. Sensor teams focus on collection and recording data as
fast as possible, while analytic teams focus on understanding
and analysis, which requires access across large swaths of
data. If these analytics are to provide on-line monitoring
to protect systems as they operate then these systems need
to perform their analytics in a timely manner. Ideally these
analytics should be able to see and use a wide view of the
data collected but this hinders their responsiveness. We can
store one second's worth of data in one second. However,
searching a year's worth of data in one second is much more

challenging. If our analysts can't use our data much of its
value is lost. To put this into perspective, imagine an Internet
without search engines.
Our research seeks to fill the gap between sensors and

analytics to find efficient ways in which sensors can still record
one second of data in one second in addition to organizing
the data to ensure that analytics can query one year's worth
of data in one second. As the size of data scales beyond
primary storage (RAM), systems are faced with one of two
choices: expire data or move to slower secondary storage
and fall behind. Traditionally, these challenges have been
tackled by expanding the amount of primary storage available
using clusters of computers with lots of RAM. However,
the data eventually catches up, overwhelming the amount of
primary storage available. Recent work with Write-Optimized
Data Structures (WODS) has shown that it is possible to
ingest torrential streams of data using larger, less expensive
secondary storage, while still maintaining timely queries.

In order to attempt to perform security monitoring on IP
traffic we developed a tool we call Diventi that uses a write
optimize B-Tree called a Be tree [?] to index network events
from either netflow data or bro connection logs.
At SuperComputing 2017, Diventi ingested bro connection

logs indexing IP addresses across 600 gigabits per-second
(Gbps) of monitored traffic on a basic Dell server. In three
days, our system indexed over 6 billion events, while main-
taining point query response times of milliseconds. In contrast,
the SciNet security team used a cluster of 30 nodes to monitor
traffic using a commercial log management tool.

In 2018, Diventi was configured to ingest netflow data
directly from the tap and aggregation infrastructure. This
enabled IP monitoring without depending on more complex
IDS tools like bro. During this effort we ingested over 4.3
billion events in six days with a peak rate of over 161,256
events per second. Additionally our server's CPU 3% utilized
on average and even during busy periods was typically less
than 10% utilized. Our 10 subsystem was also barely taxed
with out I0 channel rarely seeing numbers greater than 10%
of what we saw during benchmark testing.

Finally we monitored query response time both on the
server and empirically at the security team's CLI. All queries
with fewer that 2500 results saw latencies of less that 85
milliseconds. In the worst cases our largest queries got almost

SAND2019-3201C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Fig. 1: Be tree stores data points at each node. When a node
fills up the cached entries are flushed to the lower nodes.

1 million results in less that 7.6 seconds.

II. BACKGROUND

Inserting data into a traditional B-tree typically requires
0(logB N) writes to secondary storage per each insert. While
many of these can be cached in RAM, as N grows to years
worth of data the number of writes on each insert trend towards
this bound. As a result these traditional data structures don't
represent an efficient way to balance primary and secondary
storage for tracking torrents of security monitoring data.
Because of this security monitoring systems have typically
shied away from indexing or used RAM based data structures,
limiting the scope of data tracked.

In contrast, a write-optimized B-tree such as the Be-tree

uses buffers at each level in the tree to aggregate multiple
inserts into each write. By buffering writes at internal nodes
we improve write latency as much as 10 to 100 times while
losing only a small constant factor in query performance [?].
Each node, of size B, is divided into two sections: pivots and
cache. A tunable parameter, e, takes values between 0 and 1,
to determines the ratio between the two components. Pivots
and child pointers take up BE space and the cache takes up the
remaining space (B — B€). As elements are inserted, they are
added to the buffer of the root node. When a buffer fills up, its
contents are flushed to lower nodes, where the insertions are
again buffered. Figure 1 shows how a typical Be-tree works.

This behavior results in an insertion performance of

0(1-), as compared to a standard B-tree's 0(logB N).
For perspective, parameters of B = 1024 and € = ln 11024
.14 provide a speedup of 54x insertion rate over a standard
B-tree.
In trade, the BE tree pays 0(

log
B,
N
) for queries instead of a

standard B-tree's 0(logB N). Continuing with the example of

6 ln 024 .14, a query takes only 6.93x longer for a BE11
tree. In our experiences last year at SuperComputing, queries
typically took under 500 ms. From the practical perspective
of a security monitoring system, this trade off is frequently
the difference between being able to index events in near real-
time or having no index at all. In this light the slower queries
that use an existing index are far better than the many systems
we have seen which run grep in parallel and take minutes to
answer the same question [?].

Alternative solutions involving distributing workload over
clusters of computers using tools such as MongoDb, Hadoop,

or ElasticSearch have also been evaluated. On a cluster of 5
machines, researchers found that none of the tools were able to
exceed 200 transactions per second after 100, 000, 000 records
(average record size 2866 bytes) had been ingested in a write-
heavy workload [?]. The speed and scale of security events
needing to be tracked in large scale networks like SCiNet
necessitate the use of write optimized algorithms that enable
out of core handling high speed data streams.

III. METHODS AND ENGINEERING

During the Network Research Exhibition, we received net-
flow data directly from the security teams tap and aggregation
infrastructure and directly from the rscope IDS tool that
created bro connection logs. Diventi then indexed this data in
near real-time, tracking the rates at which events arrived. The
hardware used is a basic Dell server, specifically a Dell 730
server equipped with 128 GB of RAM, one 16 core processor,
and 5 SSDs aggregated into an 8 TB data store. Diventi was
then used by members of the SCiNet security team during
investigations to answer queries about specific IP addresses
and the interactions they had on our network. Additionally for
consistency we developed a standard test set of queries that
were preformed as a benchmark test.

A. Data Schema

Our security monitoring events typically contain a notice
about two IP addresses communicating to include timestamp,
ports, protocols, and some sense for the number of packets
and bytes in each direction. Our B€-tree stores these events
in a key-value pairing. Since each event represents two IP
addresses (IP A and IP B) communicating, two separate key-
value pairs are inserted per event, to enable quick lookup of
either IP.
We begin each key with an IP and timestamp to enable

efficient searching for a given IP, possibly over a given time
frame or possibly a given subnet of IPs. For example this index
can quickly find activity from 1.2.3.4 for the last month, or all
activity from sub-net 1.2.3.X. On the other hand searching for
all activity from 1.2.3.X from last month would require doing
the indexed search of 1.2.3.x and then manually filtering the
entries that are in that time frame.
One common limitation of a write optimized data structure

is the inability to detect collisions on inserts. This is because
detecting if that key already exists would require a full
traversal down the tree to verify that it didn't exist at any
level. This would require significantly more IOs per insertion
and would reduce the ingestion rate. We work around this
limitation by filling out our key with the rest of the unique
details from this event. This ensures that each unique security
event is kept in a unique key and there are no collisions. Table I
shows a summary of the data we have in our key.
The value holds many of the other relevant components

of a network event. These include the duration of interac-
tion, amount of data transferred, and any relevant tcp flags.
Typically, security analysts care about the scale of data and
packets transferred (e.g. 2 GB versus 2 bytes). Tools such as

Byte Range Length Field
0-3 4 IP A
4-11 8 Timestamp
12-14 2 Port A
15-18 4 IP B
19-21 2 Port B
22-22 1 Misc flags

TABLE I: Data fields for key

Bro record the exact values, with each of the 4 fields using
4 bytes. Since the complete data is kept in the original logs,
our goal is simply to help the security analyst quickly assess
whether a connection is of note. With this in mind, we record
the magnitude of data transferred instead of its full value, using
only a single byte per field, rather than 4. The reduction in
value size reduces the amount of writing done per event, thus
improving ingestion speed.

Finally we note that while our focus has been on indexing
IP address, our code design has focused on clear abstractions
between events, keys and values. This has made it easy to
adapt our tool to ingesting both bro connection logs and
netflow data. We believe this design will also enable easy
adaption to indexing other security events such as URLs and
e-mail addresses.

B. Context and Impact

In recent years, much effort has been focused on analysis
of big data and network inspection. This work typically has
the goal of creating a security system which, in an automated
fashion: actively monitors the network, recognizes threats, and
takes action to stop those threats. However, considerably less
effort has been focused on providing that data in the context of
network events in actionable times to these analytics. Without
timely query responses and comprehensive data, these systems
must either limit to scope of the data they consider or reduce
their approach to a post event alert instead of active responses.

Berry and Porter [?] showed that state-of-the-art hashing and
expiration methods can quickly degrade in performance as the
data set needed to correctly find patterns of interest exceeds the
size of available memory. They used the (non-write-optimized)
reference implementation for the Firehose benchmark. When
the working space could exactly hold the set of active keys, the
reference implementation reported 2/3 of the reportable keys
(prematurely expiring the rest). When the working space could
hold half the active keys, about 1/3 of the reportable keys
were reported. When only 1/4 the active keys fit in memory,
essentially nothing was reported. This motivates the need for
tools that can efficiently use both RAM and secondary storage
to increase storage capacity while still providing timely query
responses.

Diventi fills this need by indexing data quickly for storage
across both primary (RAM) and secondary (SSD) storage
while still allowing for timely query responses. Secondary
storage is both less expensive and available in larger quantities
than primary storage, reducing costs significantly. The in-
creased speed and storage capacity make more efficient use of
the resources available and increase the scope of data analytics

In
se
rt
io
ns
 P
er

 S
e
c
o
n
d

100000

80000

60000

40000

20000

Insertions Per Second vs Time in Seconds

— median

— 25th percentile

— 75th percentile

1‘,(:\:v1

o
o 50000 100000 150000 200000

Time in seconds
250000

Fig. 2: Insertions per second as seen by Diventi during Super
Computing 2017.

can consider. It is tools like Diventi that will help bridge the
gap between sensors that can record torrents of data in one
second and analytics that wish to consider years of that data
in one second.

IV. RESULTS FROM USE AT SCINET

Diventi has been used to index IP address at both SC 2017
and 2018. Here we present a summary of our experiences
indexing a high speed stream of IP addresses and answering
queries in support of security monitoring.
At supercomputing 2018, over the course of six days,

Diventi indexed 4.3 billion events from NetFlow records.
Throughout the event, the server was not stressed, typically
seeing less that 10% utilization of CPU or 10 capacity, and
handling up to 161,256 events per second with not issues
whatsoever. Query response times also provided prompt results
for security operators. Taking less that 85 milliseconds for
queries with less that 2500 events and in the worst case taking
7.6 seconds for a query that got almost 1 million results.
Overall, the security team found Diventi to be a useful tool in
protecting SciNet. But we would argue the a far great value
for such a system will be when automated analytic tools are
able to make broader use of the full picture that is provided
by tools like Diventi.

V. INSERTION AND QUERY PERFORMANCE

At Super Computing 2017, Diventi indexed bro-conn logs
as 6.7 billion events with a maximum rate of 104,060 inserts
per second. At supercomputing 2018, Diventi received Netflow
data directly from the network infrastructure. Over the course
of the event, Diventi ingested 4.3 billion events at a maximum
rate of 161,256 events per second. Figures 2 and 3 show
the insertions per second as seen by Diventi during SC17
and SC18 sampled every 5 seconds. The red and green lines
represent the 25th and 75th percentile over every 5 minute
period. The blue line represents the median for the same
period.

In
se
rt
io
ns
 P
er

 S
e
c
o
n
d

100000

60000

60000

40000

20000

Insertions Per Second vs Time in Seconds

— median

— 25th percentile

— 75th percentile

50000 100000 150000 200000 250000 300000 350000 400000
Time in seconds

Fig. 3: Insertions per second as seen by Diventi during Super
Computing 2018.

These two graphs show similar cycles of activity and
inactivity. One key difference we see is that while 2018 has
a higher peek rate, the scatter of points seems to be a bit
wider spread in 2017. We speculate that the netflow data sent
directly from our network hardware had little processing to
do and reflected exactly what the network was seeing at that
moment. While in 2017 our feed came from bro IDS sensors
that had their own buffers and a good bit of processing that
needed to be done before a connection log line was generated.
As a result this additional processing added a smoother spacing
to the rates at which we saw events.

A. Query Response

To monitor the user experience with Diventi we instru-
mented query response times on the server and periodically
performed a standard set of queries while using the unix utility
t ime to measure the total latency. The table below shows
the results for our standard query set run in the last hours of
SCiNet being live. In addition we list operational queries that
were conducted in that same time-frame. These operational
queries lack metrics for user side latency because the users
were not using the t ime utility. What we can see from this
data is that for any modestly sized result, say 2583 or less our
response times are less that 85 milliseconds. Even more so for
rather large queries our response times were still measured in
single seconds. In short these response times provide a strong
foundation for near real-time response for individual secure
personnel. Moreover their the ability to support automated
analytics in these timeframes can enable in-line analytics that
could make use of a far greater situational awareness than
typically see today.

VI. BENCHMARK TESTING OF OUR SERVER

Despite the rigorous demands of monitoring the entire
SciNet 2018 network infrastructure, Diventi did not stress the
single box it was running on at any point. In 2018, we typically
saw less than 10% resource utilization even at points of active
ingestion. Our CPU usage never exceeded 47% and on average

TABLE II: Query result counts and latencies seen by the user
cli and as seen on the Diventi server, for our standard query
set and operational queries run in the last few hours.

Query # Results User (s) Server (s)
x.x.106.8 0 0.078 0.017

x.x.106.1/24 0 0.058 0.0001
x.52.66 2 0.084 0.0001

x.x.52.1/24 2 0.063 0.0001
x.x.21.59 8 0.064 0.024

x.x.21.1/24 1250 0.074 0.015
x.x.128.132 209141 1.726 1.64

x.x.50.49 382703 2.76 2.65
x.x.122.73 721 0.020513
x.x.52.19 2583 - 0.040452

x.x.204.40 1216 - 0.013698
x.x.225.81 22710 0.216706

x.x.142.100 927344 - 6.165492
x.x.245.157 963450 - 7.554234

was 3%. Our I0 utilization at typical peaks was less than 10%
of throughput we saw during performance tests of our server.
TMK: Evan to build graph of ICO usage and CPU usage
from vmstat

VII. CONCLUSIONS

Diventi's performance at supercomputing 2017 and 2018
demonstrates the viability of near real time indexing of net-
work events and opens the door to running analytics on live
network traffic data. While there are lots of efforts to collect
security monitoring data quickly and lots of efforts to provide
near real-time analytics that can respond to attacks, there is a
big need to build the bridge between these two efforts to help
ensure our analytics can make use of the largest situational
awareness that our data and algorithms can provide. Diventi
and our experiences during SC 2017 and 2018 have gone a
long way to helping build such a bridge.
Acknowledgments Sandia National Laboratories is a multi-
mission laboratory managed and operated by National Tech-
nology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Adminis-
tration under contract DE-NA-0003525.

