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Introduction
Neuromorphic computing combines neural inspired algorithms with
brain-like architectures to achieve low-power solutions to challenging
computing problems [3, 4].

These computing problems have been on the forefront of scientific
computing for decades, and with the power benefits and efficiencies that
non-traditional computing gives, methods like neuromorphic computing
can revolutionize the industry [1].

Background
• Random Walks

A random walk is the movement a particle takes in a diffusion scheme. If a particle is at a location
x, then it will move to the left (x — 1) with a certain probability p, and to the right (x + 1) with a
probability 1 —p= q.

This motion can be modeled with a well known Partial Differential Equation (PDE), known as
the diffusion (or heat) equation. This is some summarized steps of Chapter 5 of [6]. We will show
this relationship here:

It can be shown that the 1-D random walk case can be expressed with a binomial distribution.
The probability event that the particle has taken m steps to the right at time n can be denoted as
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r , where r = — (n —

2

Let the function u(x, t) represent the probability that the particle lies in an interval centered at x at
time t with a width 2Ax. Then, we can denote u(x, t) as the space- and time-scaled probability
function
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We can then use the Central Limit Theorem and approximate this with the normal distribution. The
resulting gaussian,
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Where D is the diffusion coefficient and is defined as D =
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• Spiking Neural Algorithm

Method
The spiking neural algorithm discussed here

was first presented in [5]. This algorithm was
designed to conduct random walks, inherently
solving the diffusion equation stochastically
using spiking neuromorphic architectures. The
density method, depicted in Figure 1, works by
placing an embedded circuit of neurons at each
node in the graph. Rather than always tracking
where each particle is, we can count the
number of particles at each node at any given
timestep.
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The random walk is conducted by initially placing walkers at selected points in the graph. When a
walker is at a node, the embedded circuit determines which node the walker will go to at the next
time step. Every circuit contains a set of stochastic neurons that each correspond to a possible
direction. A particle is signaled to move when one of those neurons spikes.

Random Walk Applications

• Image Analysis
By using an image as the underlying graph structure, we can

conduct random walks on images. We can conduct random
walks on images. We can use the walkers to replicate the image
by using the color of each pixel to determine the directional
probability at each node. A noise constant can be added in
order to create a biased effect for the walkers.

An example of a random walk conducted on an image using
the density method can be seen in Figure 2. The darker color

corresponds to a larger number of walkers at that node.

• Capacitance
It can be shown in [2] that a random walk can be used to

find the charge density of a capacitor. Using the charge density,

we can find capacitance. This random walk application is
different from the others because it requires high connectivity.
This would require a significant amount of neurons, and is not
very feasible with the way our algorithm is set up. Figure 3
contains an example of how a random walk can be conducted
to calculate capacitance.

Due to this potential memory problem, we are considering

designing alternate hierarchical network connections, which

could also be implemented in previous applications as well in

order to speed up calculations.

• Radiation Transport
For a 1-D radiation transport scheme, we consider

random movement throughout a slab. Particles are either

absorbed or reflected at random spatial intervals
throughout the slab. This results in 3 random numbers:
distance traveled, direction, and rate at which the particle is
absorbed.

We are working on mapping this to our density method,
where population of neurons correspond to spatial
locations. The spikes between locations represents particle
movement. This has potential for a lot of non-local jumps,
which is challenging for our model. There are also multiple
random decisions to consider. Figure 4 contains a potential

neural scheme for 1D radiation transport.
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Figure 2 Random walk replication of an image. Darker colors

correspond to more walkers at that node.

Figure 3 Example scheme of movement of particle on box. A

particle of the surface can choose any angles to project onto

another surface. This requires high connectivity due to the number

of possible movements.
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Figure 4 A potential neural model for radiation transport. For each

neuron, identify all possible projections in the available range. If the tail

is negative, it corresponds to a reflection where positive tail corresponds

to transmitting node beyond slab.

Extending Algorithm
As presented, the density method supported 1- and 2-dimensional

graphs, which corresponded to 2 and 4 possible directions for the

walkers. We were able to generalize this to work on larger graphs.
To do this, we developed a stochastic algorithm for the spiking

neurons in the embedded circuit. We created a probability tree,
depicted in Figure 5, that propagates spikes down the tree until they
reach the output gate neurons at the bottom. Figure 6 shows which
neurons need to spike in order to obtain each direction.

The output neurons each correspond to a possible direction. Thus,
the tree in Figure 5 corresponds to 8 possible directions. To ensure
only one output neuron spikes, we created delays throughout the tree as
well as negatively weighted spikes, to stop other neurons from spiking.

Figure 5 Probability tree used in stochastic

algorithm. Nodes I-P correspond to 8 directions.
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Figure 6 8 direction scheme showing which nodes need

to spike (denoted 1) to signal a specific neuron/direction.
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Figure 9 TrueNorth is efficient for

implementing density method random walk

algorithm. Ideal because of low power and low

energy per operation with low neuron fan-in.

Downsides are memory induced: high number of

neurons required.
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Figure 7 Corelet of random

walk vertex implemented on

TrueNorth. Currently supports 4

directional outputs.

Figure 8 The total vertex size scales with

the number of outputs desired. Mapping

efficiency occurs for low connectivity — why

current applications are challenging.
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