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Introduction

Remote sensor systems care about SWaP,
deep learning algorithms do not

Deep learning results are powerful, but
computation platforms have kept them out .
of reach for edge computing

Neuromorphic
Architectures
Highly Parallel

Processor
in Memory

« Co-localized Memory
+ Event-Driven

+ ‘On when you need it’

Neuromorphic platforms may solve the ‘P’
problem

Challenges
* Algorithm compatibility
* Programming interfaces

* At-scale production

« Low Energy

Event-Based Spiking Processing
+ Added Computation at the Source
» Sparse Communication
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This presentation

Porting traditional and learning based
algorithms to neuromorphic platforms

Flexible and efficient deep learning networks

Programming and Performance of various
neuromorphic platforms

Neuromorphic sensors

+ High Bandwidth
+ Slow
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Porting Algorithms to Neuromorphic Platforms

¢ Classical algorithms are tried-and-tested

* Neuromorphic platforms must meet and exceed
classical results

* Neuromorphic has been cornered into learning
based algorithms only

* View neurons as highly parallel and simple
processots
* Min, Max, Sorting, Optimization, and Filtering
* Matrix multiplication

* Cross-correlation with application to Particle Image
Velocimetry

* Random Walk with application to the diffusion
equation

*Whetstone: A general ANN to SNN conversion
tool

* A process for training binary, threshold-activation
SNNs using existing deep learning methods

* Conversion introduces minimal loss in accuracy.
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W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone, “Training
deep neural networks for binary communication with the whetstone method,”
Nature: Machine Intelligence, In Press.




5 1 Examples continued...

Aggregation of spikes weighted by their temporally code value

Verzi, Stephen J., et al. “Optimization-
based computation with spiking neurons,”
Neural Networks (I[CNN), 2017 International
Joint Conference on. IEEE, 2017.




And more...

PIV Base Video 2 PIV Results Video 2
Circular Flow (Clockwise) Circular Flow (Clockwise)
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Performance Results

Case: Seventy five (75) 640x480 image frames with 32x32 input tiles
® 300 tiles perimage, 74 image compares, 22,200 algorithm executions,
1 execution requires 4994 ticks

mm Actual’/ Overhead® | Overclocked / Overhead?®

Serial 1 30.8 hrs. 31.8 hrs. / 88.7 hrs. 2.8 hrs." /59.5 hrs.
Parallel 1 5 6.2 hrs. 6.4 hrs. /33.9 hrs. 0.6 hrs." /27.6 hrs.
Parallel 16 89 20.8 min. 21.0 min. / 4.7 hrs. 4.4 min.* /4.6 hrs.
Parallel 16 110 16.8 min. -/- -/-

"1 tick = 1ms | ™1 tick = Sus | *1 tick = 200us | °Includes 1/O
Reported data is based on a small sample average and extrapolated.




71 Context-Sensitive Deep Learning

* Provide a network with the flexibility to
perform different tasks without
reprogramming

* Neuromodulation: The idea that diffuse,
network-wide inputs can adjust behavior
* Contextual information is fed into network

through a parallel pathway

* Context neuromodulation provides a biasiny
effect on downstream neurons

* Current capabilities:

* Superclass exclusion: lower-level
characteristics that are dependent on higher-
level abstractions

* Context-dependent function: ability of a
singular network to incorporate multiple
behaviors
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s I Superclass Exclusion

Lower-level characteristics that are dependent on higher-level abstractions
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9 I Context-dependent function
Ability of a singular network to incorporate multiple behaviors _
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Neuromorphic Hardware

gyrfalcon
technology
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https://www.gyrfalcontech.
ai/solutions/2803s/

* https://developers.googleblog.com/2019/03
/introducing-coral-our-platform-for.html

https://www.brainchipinc.com/
products/brainchip-accelerator
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11 1 Programming and Performance of Neuromorphic Hardware
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Programming and Performance of Neuromorphic Hardware
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131 Neuromorphic Sensing

* Traditional neural networks operate on real number valued data.
* Neuromorphic networks operate on spiking data.

* Transduction, the process of converting non spike data to spikes
* Network and dataset dependent

* Adds negatively to the overall network performance

* Sensors that produce native spike data outputs are advantages to neuromorphic
hardware

* Dynamic Vision Sensor (silicon retina)

left hand clockwise hand clap

* Dynamic Audio Sensor (silicon cochlea)
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http://research.ibm.com/dvsgesture/

A. Amir, B. Taba, D. J. Berg, T. Melano, J. L. McKinstry,
C. Di Nolfo, T. K. Nayak, A. Andreopoulos, G. Garreau,
M. Mendoza et al, “A low power, fully event-based
gesture recognition system.” in CVPR, 2017, pp. 7388—
7397.




14 I Conclusion and Discussion

Deep neural networks are ubiquitous in many fields

Classical architectures are not ideally suited for these algorithms, especially for
resource constrained platforms

Co-development of algorithms and architecture can efficiently exploit neuro-
dynamics

* Parallelism

* Sparse event-driven computation

* Simple computation elements with complex connectivity.

* Neuromorphic platforms offer substantial advantages for sophisticated remote
sensing domains while operating within size, weight, and power constraints.




