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Introduction

Remote sensor systems care about SWaP,
deep learning algorithms do not

• Deep learning results are powerful, but
computation platforms have kept them out
of reach for edge computing

• Neuromorphic platforms may solve the ̀ 13'
problem

• Challenges

• Algorithm compatibility

• Programming interfaces

• At-scale production

• This presentation

• Porting traditional and learning based
algorithms to neuromorphic platforms

• Flexible and efficient deep learning networks

• Programming and Performance of various
neuromorphic platforms

• Neuromorphic sensors

Neuromorphic
Architectures

• Highly Parallel
• Co-localized Memory
• Event-Driven
• 'On when you need it'
• Low Energy

Processor
in Memory

Traditional so \
Architectures
• Sophisticated & Comms.
Serial CPUs Bottleneck •

• Binary Processing
• 'Always on

Event-Based Spiking Processing
• Added Computation at the Source
• Sparse Communication
• Low Energy/Low Latency

Traditional Processing
• Requires Link to Ground
• High Bandwidth
• Slow



3 Porting Algorithms to Neuromorphic Platforms

Classical algorithms are tried-and-tested

Neuromorphic platforms must meet and exceed
classical results

Neuromorphic has been cornered into learning
based algorithms only

• View neurons as highly parallel and simple
processors

• Min, Max, Sorting, Optimization, and Filtering

• Matrix multiplication

• Cross-correlation with application to Particle Image
Velocimetry

• Random Walk with application to the diffusion
equation

•Whetstone: A general ANN to SNN conversion
tool

• A process for training binary, threshold-activation
SNNs using existing deep learning methods

• Conversion introduces minimal loss in accuracy.
,

Evaluate Evaluate
Performance Performance



4 Example Algorithms on Neuromorphic
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W. Severa, C. M. Vineyard, R. Dellana, S. J. Verzi, and J. B. Aimone, "Training
deep neural networks for binary communication with the whetstone method,"
Nature: Machine Intelligence, In Press.



5 Examples continued...

Aggregation of spikes weighted by their temporally code value

Verzi, Stephen J., et al. "Optimization-
based computation with spiking neurons,"
Neural Networks (IJCNN), 2017 International
Joint Conference on. IEEE, 2017.

•



6 And more...

PIV Base Video 2 PIV Results Video 2

Circular Flow (Clockwise) Circular Flow (Clockwise)
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Performance Results

Case: Seventy five (75) 640x480 image frames with 32x32 input tiles

• 300 tiles per image, 74 image compares, 22,200 algorithm executions,

1 execution requires 4994 ticks.

Mode Chips inst. Theoretical* Actual*/ Overhead° Overclocked / Overhead°

Serial 1 1 30.8 hrs. 31.8 hrs. / 88.7 hrs. 2.8 hrs.t / 59.5 hrs.

Parallel

Parallel

Parallel

1

16

16

5

89

110

6.2 hrs.

20.8 min.

16.8 min.

6.4 hrs. / 33.9 hrs.

21.0 min. / 4.7 hrs.

—/—

0.6 hrs.' / 27.6 hrs.

4.4 min.*/ 4.6 hrs. I

—/—

*1 tick = lms I *1 tick = 5µs I *1 tick = 200u.s I °Includes I/0

Reported data is based on a small sample average and extrapolated.



7 Context-Sensitive Deep Learning

• Provide a network with the flexibility to
perform different tasks without
reprogramming

• Neuromodulation: The idea that diffuse,
network-wide inputs can adjust behavior

• Contextual information is fed into network
through a parallel pathway

• Context neuromodulation provides a biasiq
effect on downstream neurons

• Current capabilities:
• Superclass exclusion: lower-level

characteristics that are dependent on higher-
level abstractions

• Context-dependent function: ability of a
singular network to incorporate multiple
behaviors

Image

Function

or

Superclass

Convolution Layers

Normal biases common
to feature extraction

Dense
Layers

1 I

Classification

Context-dependent biases
for decision layers

Direct training signal

Coarse RNN
Higher-level biases

Fine RNN Classification

Class



8 Superclass Exclusion

Lower-level characteristics that are dependent on higher-level abstractions
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9 Context-dependent function

Ability of a singular network to incorporate multiole behaviors

Functional
Context
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10 Neuromorphic Hardware

•

https://www.brainchipinc.com/
products/brainchip-accelerator

http://www.artificialbrains.com/brainscales
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11 Programming and Performance of Neuromorphic Hardware
# Neurons

• There are many different emerging
neuromorphic architectures

• Design tradeoffs focus upon different
features making them better suited for
different applications

• Architectural differences result in
performance differences for different tasks

• Bottom figure shows benchmark results
across a suite of architectures on an
inferencing task comparing throughput
with power consumption

• Seeing great promise in terms of
performance per watt from emerging
neuromorphic architectures

• Such approaches are an enabler for
performing AI tasks in SWaP constrained
envirnnnients
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12 Programming and Performance of Neuromorphic Hardware
4 neighbors
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A Stochastic Tree Nodes
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NODE CORES

•

Output

To
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 t To
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640,000 nodes in an 800x800
2D mesh topology consuming

63,378 TrueNorth Cores across
16 TrueNorth processors



13 Neuromorphic Sensing

DVS128 Zynq

USB 2 0

a)

Traditional neural networks operate on real number valued data.

Neuromorphic networks operate on spiking data.

Transduction, the process of converting non spike data to spikes

- Network and dataset dependent

• Adds negatively to the overall network performance

• Sensors that produce native spike data outputs are advantages to neuromorphic
hardware

• Dynamic Vision Sensor (silicon retina)

b)

• Dynamic Audio Sensor (silicon cochlea)

Temporal filtets
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Winner- Shding
take-all window
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h) 
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A. Amir, B. Taba, D. J. Berg, T. Melano, J. L. McKinstry,
C. Di Nolfo, T. K. Nayak, A. Andreopoulos, G. Garreau,
M. Mendoza et al., "A low power, fully event-based
gesture recognition system." in CVPR, 2017, pp. 7388-
7397.
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http://research.ibm.com/dvsgesture/



14 Conclusion and Discussion

• Deep neural networks are ubiquitous in many fields

• Classical architectures are not ideally suited for these algorithms, especially for
resource constrained platforms

• Co-development of algorithms and architecture can efficiently exploit neuro-
dynamics

• Parallelism

• Sparse event-driven computation

Simple computation elements with complex connectivity.

• Neuromorphic platforms offer substantial advantages for sophisticated remote
sensing domains while operating within size, weight, and power constraints.


