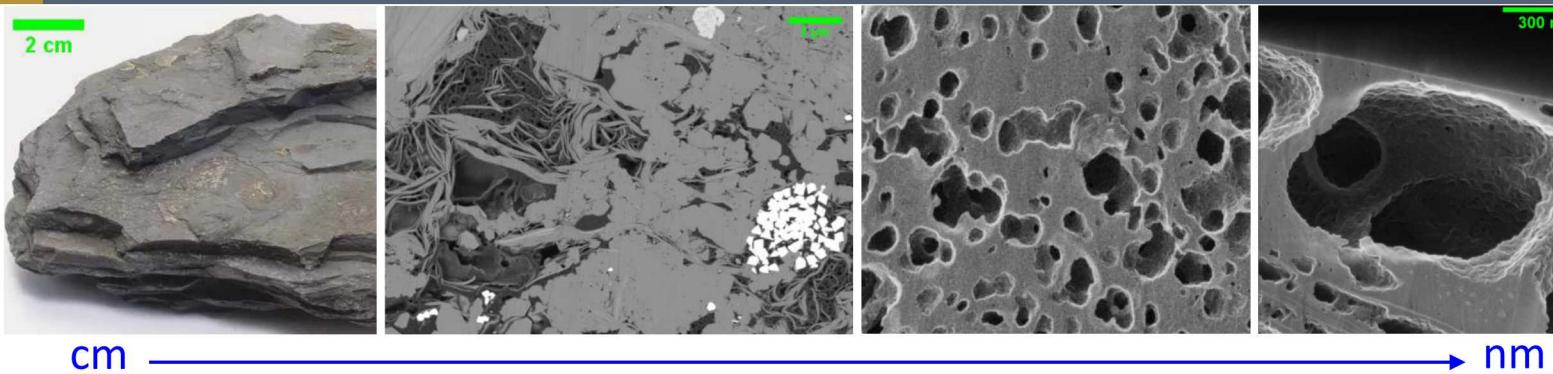
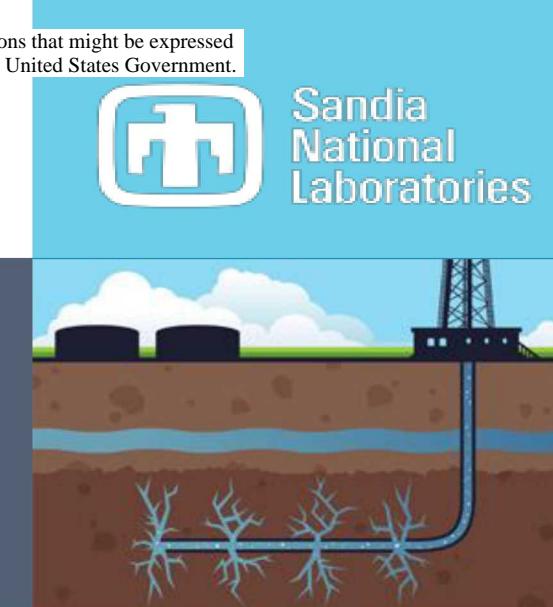




Sandia  
National  
Laboratories

SAND2019-3128C

# Neural Networks for microscopic image analysis



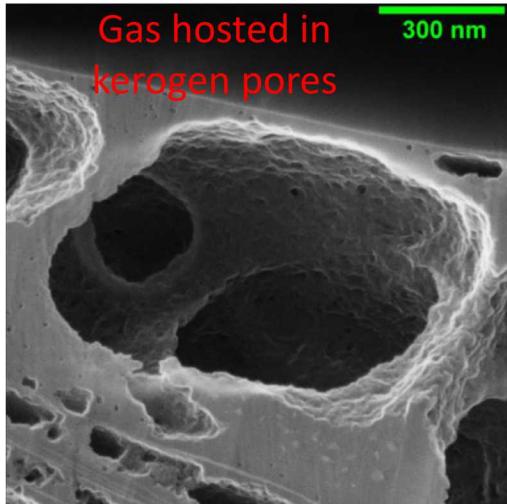
PRESENTED BY

Guangping Xu, Yifeng Wang and Stephen J Verzi

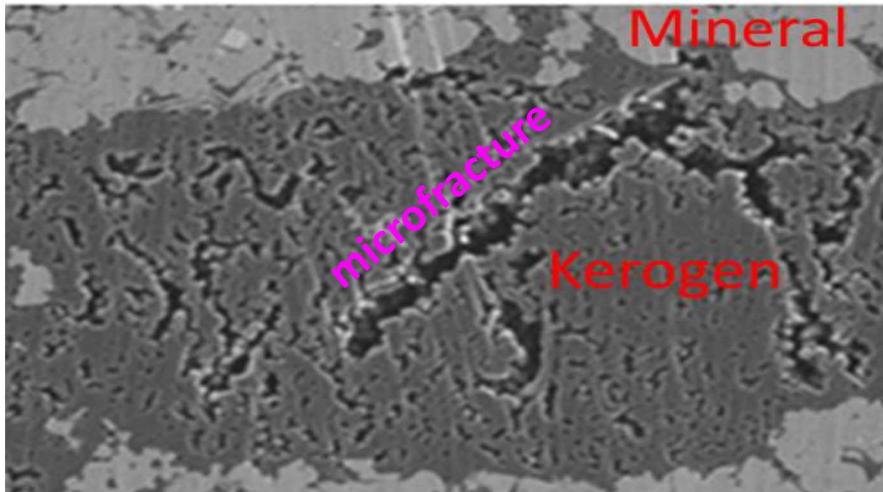


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

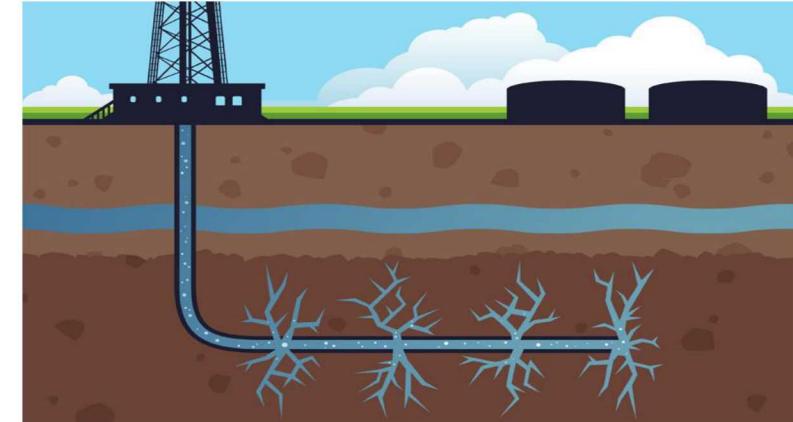
# Shale Gas Extraction Process



Gas release from kerogen pores (size: nanometer scale)



Fluids “flow” from kerogen via nano- or micro-fractures (Channel size: nanometer to micrometer scale)



Fluids flow into hydraulic fractures then to production well (Channel size: millimeters to decimeters)

Limiting steps

Need to quantify the spatial distribution network for Kerogen – Pore – Micro-channels



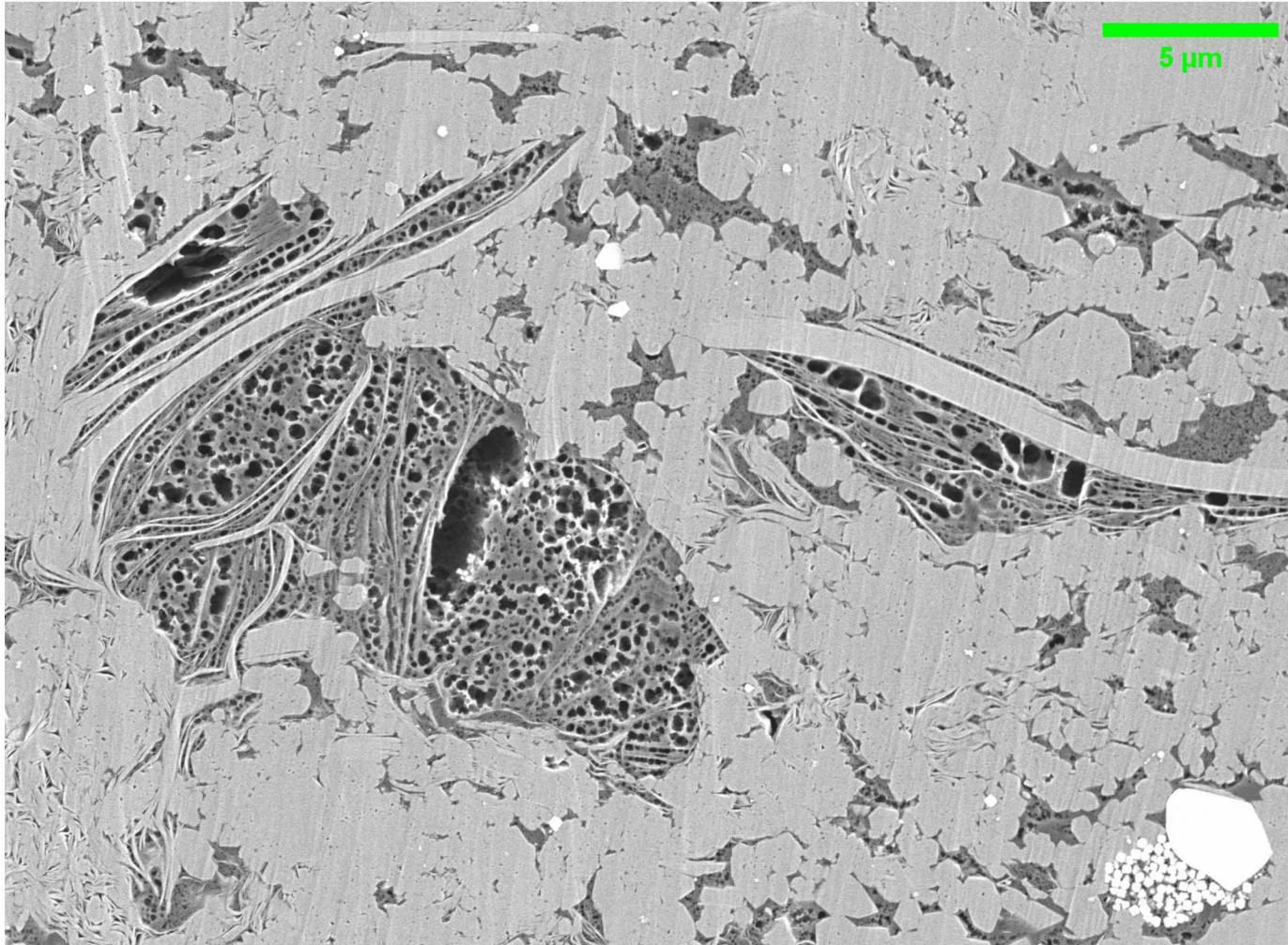
Thinking of an escape plan in case of fire:

- (1) Space between rows (micro-channels) only allows people to leave one by one – “diffusion process”
- (2) The width of the door – “pore network tortuosity”
- (3) Once hallway is reached – hydraulic fractures, then highway

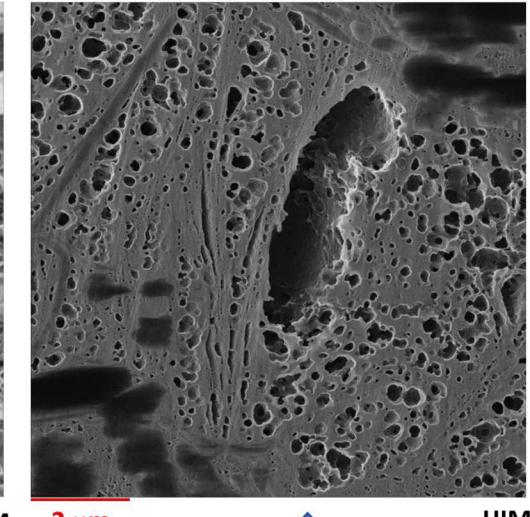
# Shale Imaging



Nano-meter resolution images can be acquired by FE-SEM, FIB-SEM, Helium Ion Microscope under different modes



FESEM 2  $\mu\text{m}$



HIM 2  $\mu\text{m}$

Secondary electron mode  
(SE1)

He ion mode

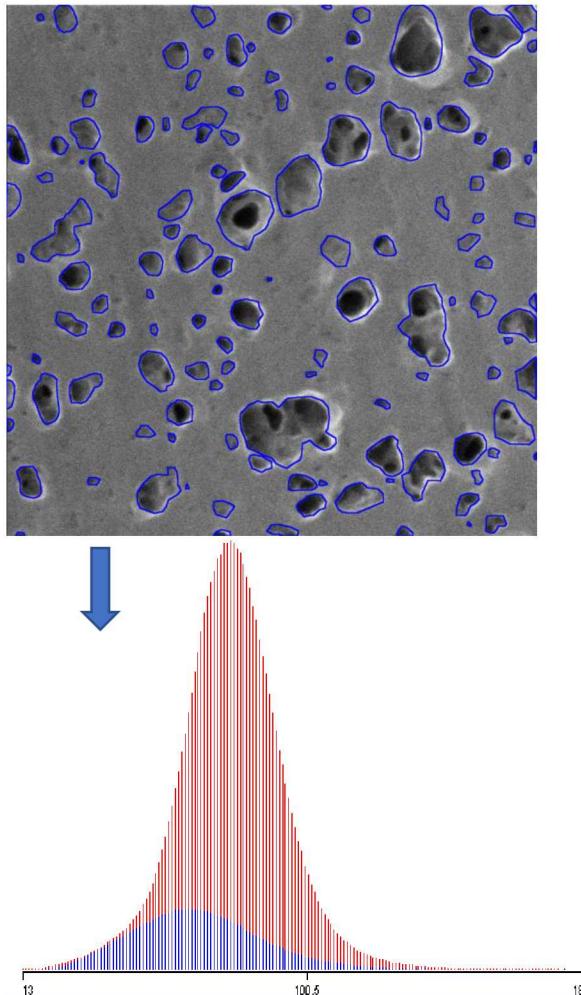
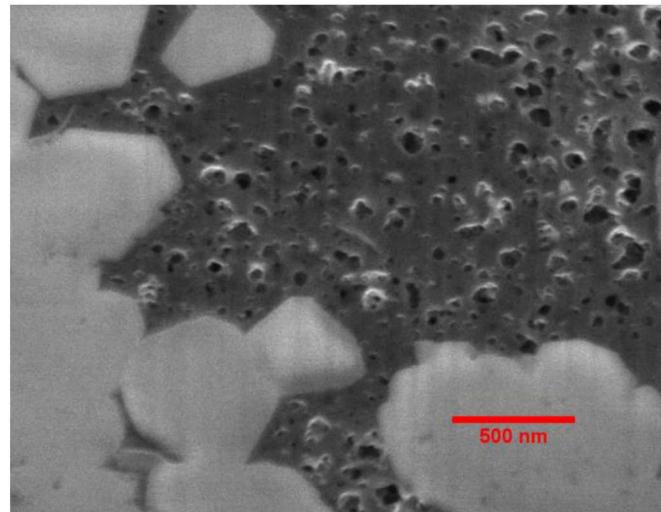
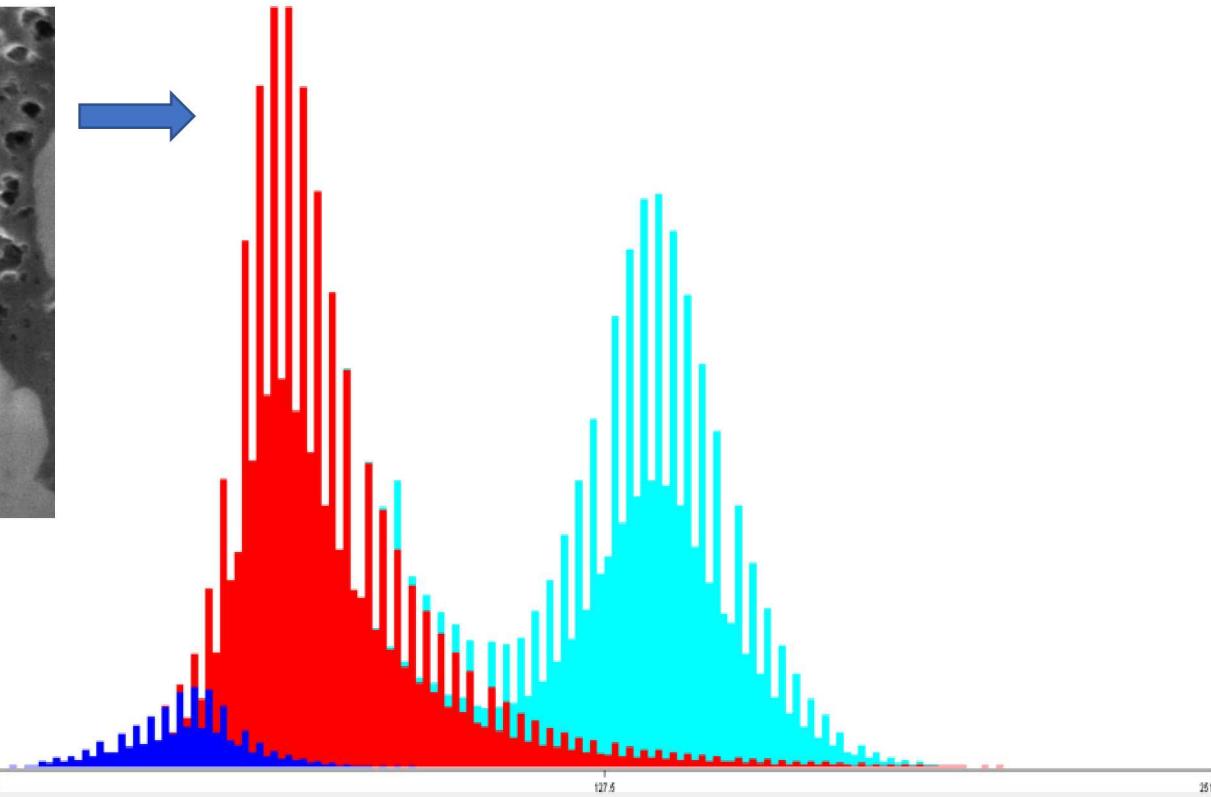
Secondary electron (SE2) plus SE3

Shale is NOT a black box. Gas shale has three main constituents: framework minerals, kerogen, and pore space

# Image Segmentation



Traditionally, intensity is used for segmentation (only one dimension)



Special challenges:

- (1) Edge effect
- (2) Depth of field view
- (3) Large dimension of images

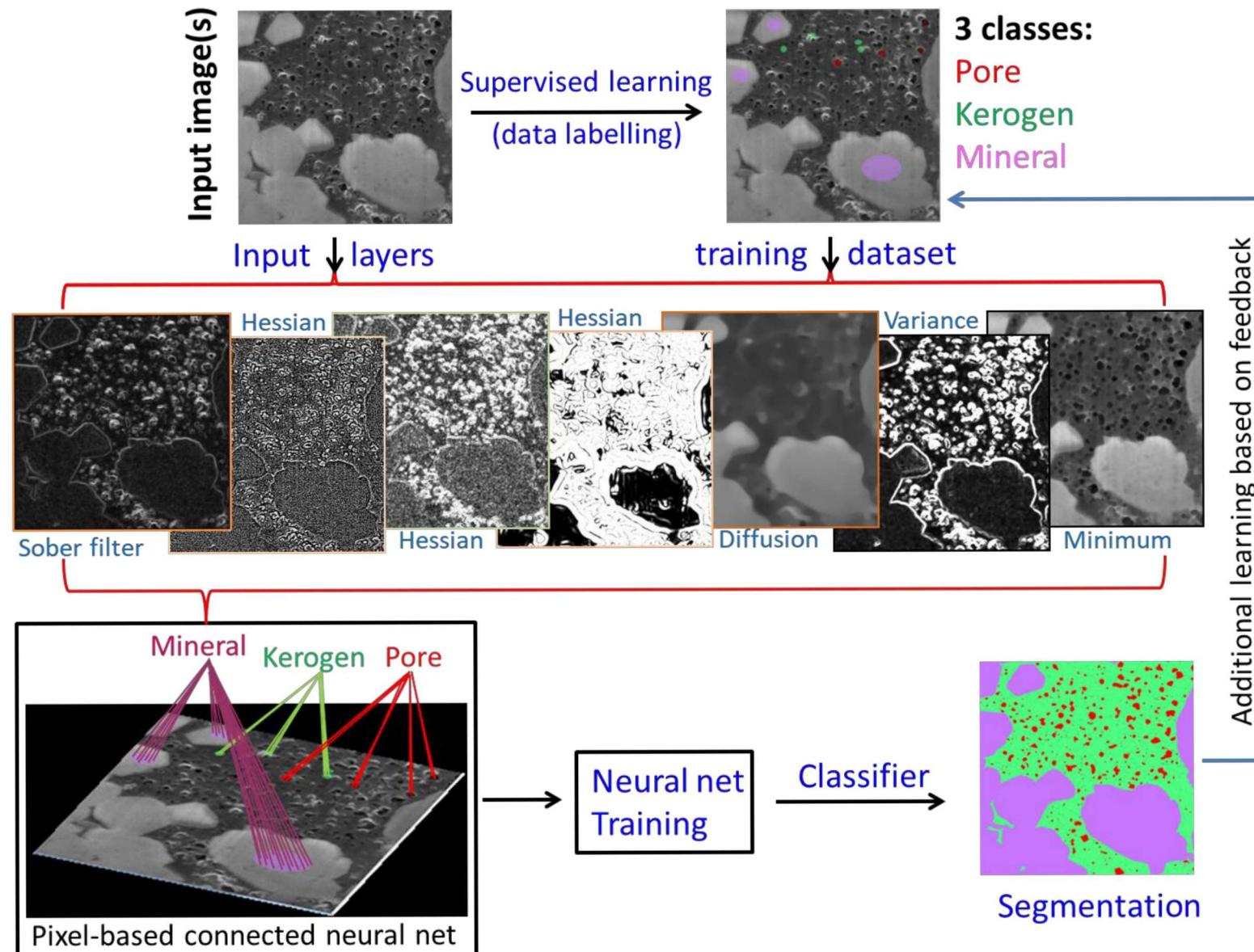
Blue – pore; Red – kerogen; light blue - mineral

There are overlaps in intensities

# Machine Learning based Image Segmentation



- Step 1. image normalization
- Step 2. data labelling
- Step 3. feature extraction
- Step 4. train dataset
- Step 5. Use classifier to segment images

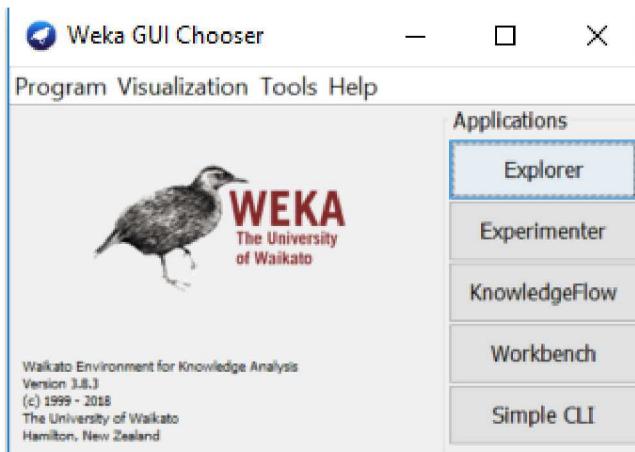


# Neural Network Training

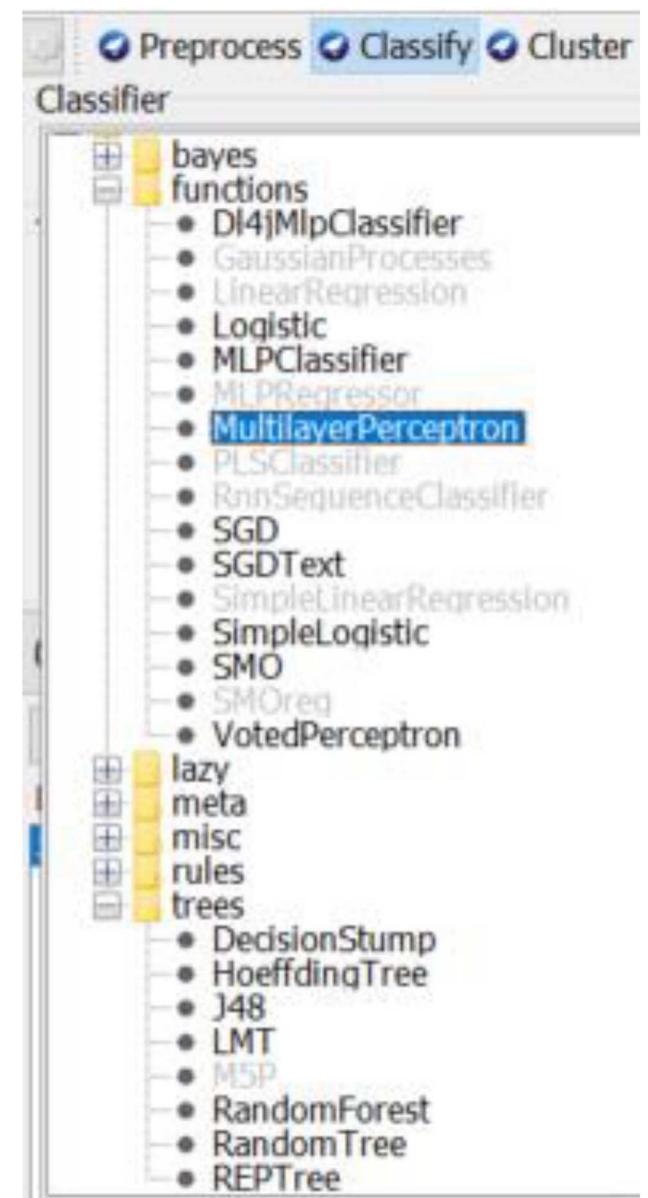


The dataset can be trained on Weka GUI interface (or ImageJ) using existing machine learning / deep learning algorithms:

- (1) MultilayerPerceptron
- (2) Random Forest
- (3) Deeplearning4j



**ImageJ**  
Image Processing and Analysis in Java



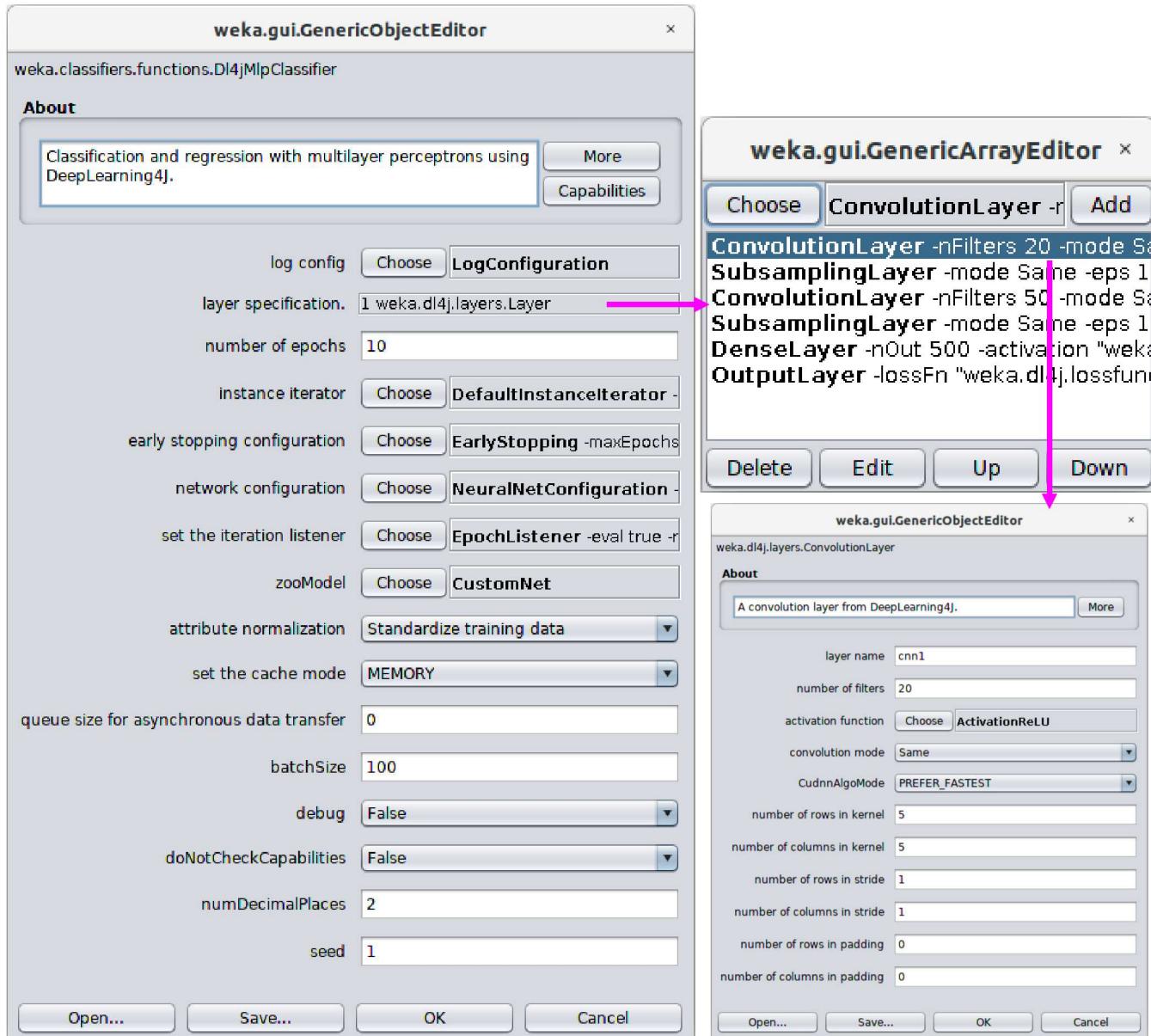
# Neural Network Training - implementation



The dataset can be trained on Weka GUI interface (or ImageJ) using existing machine learning / deep learning algorithms:

- (1) MultilayerPerceptron
- (2) Random Forest
- (3) Deeplearning4j

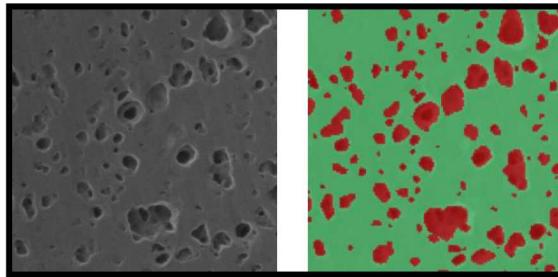
It can also be easily implemented using personal computer without GPU. It does not need large training dataset. No Programming skills needed!



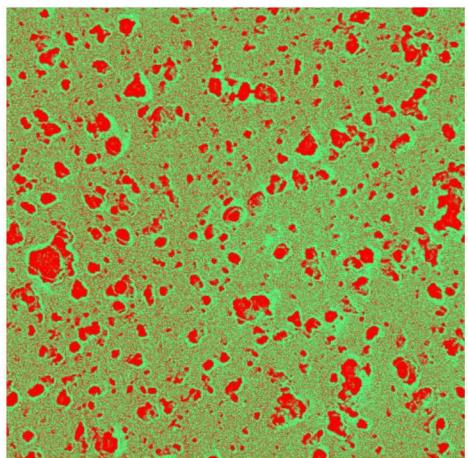
# Knowledge Transfer Challenges



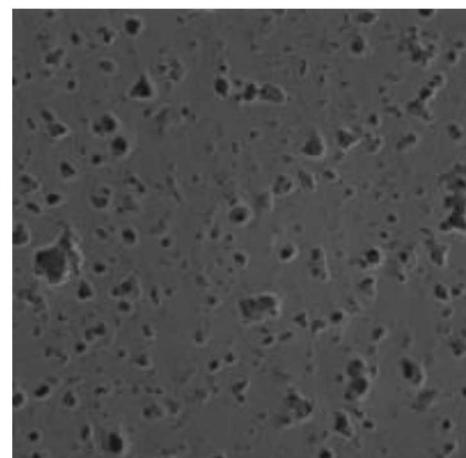
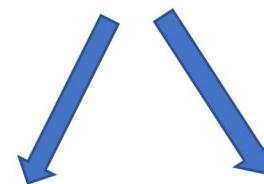
Classifier based on trained image  
(200 x 200, downsized from 2048 x 2048)



Segmented image  
(2048 x 2048)

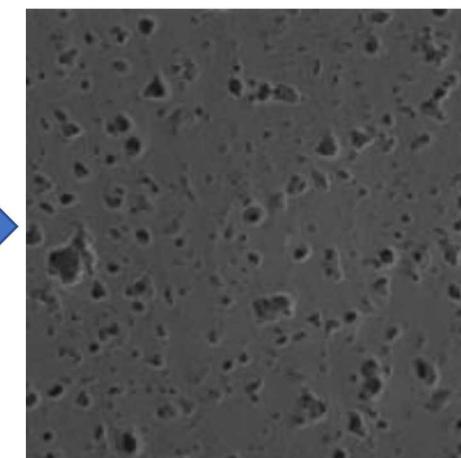


Tested image  
(2048 x 2048)



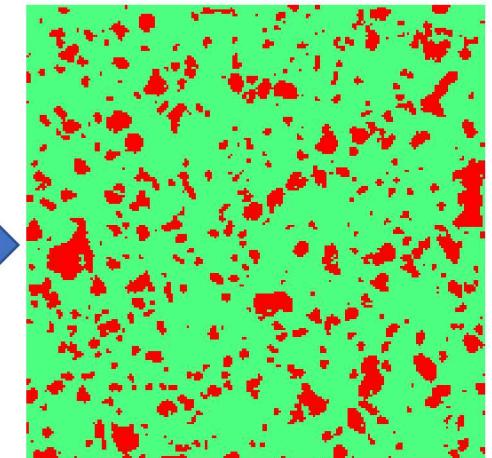
Downsize to  
200 x 200

Tested image  
(200 x 200)



Because intensity gradient is an important parameter that separates pore from kerogen, changing resolution changes the gradient and thus produces noise

Segmented image  
(200 x 200)

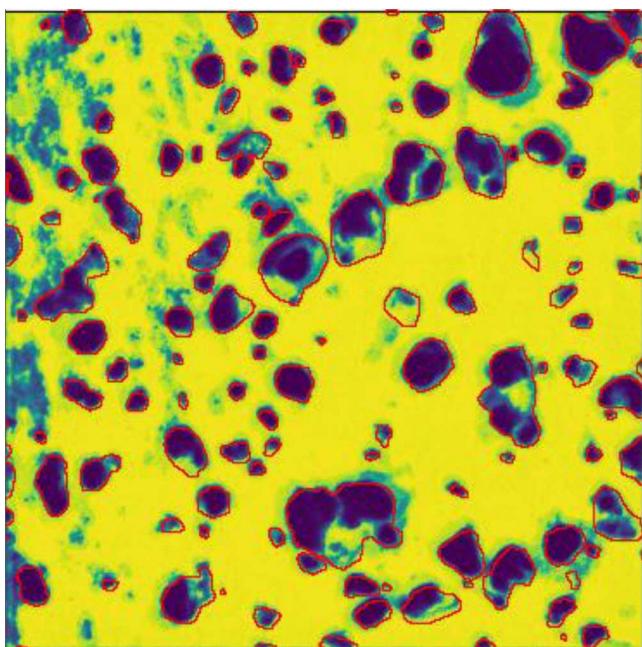


# Convolutional Neural Network (CNN) Training

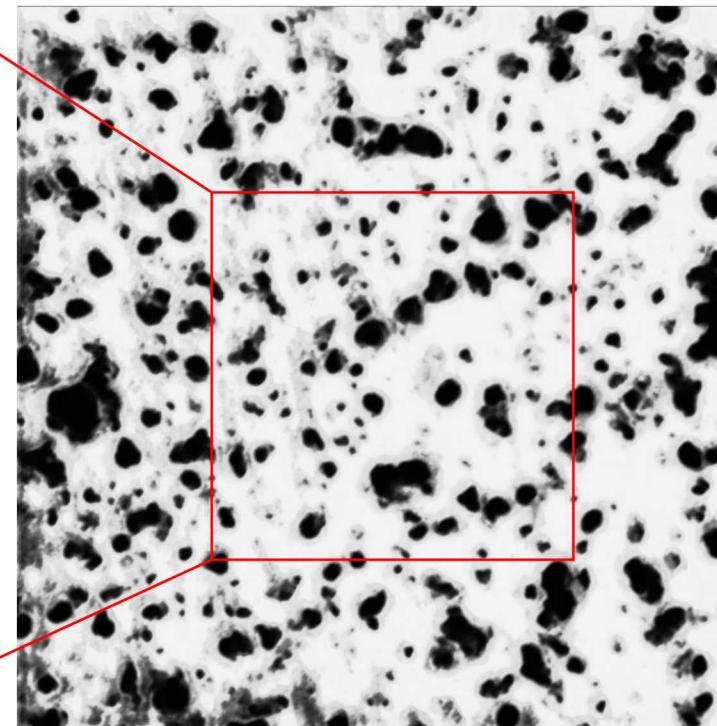


A 2048 U-Net (CNN) is built to accommodate 2048x2048 training image:

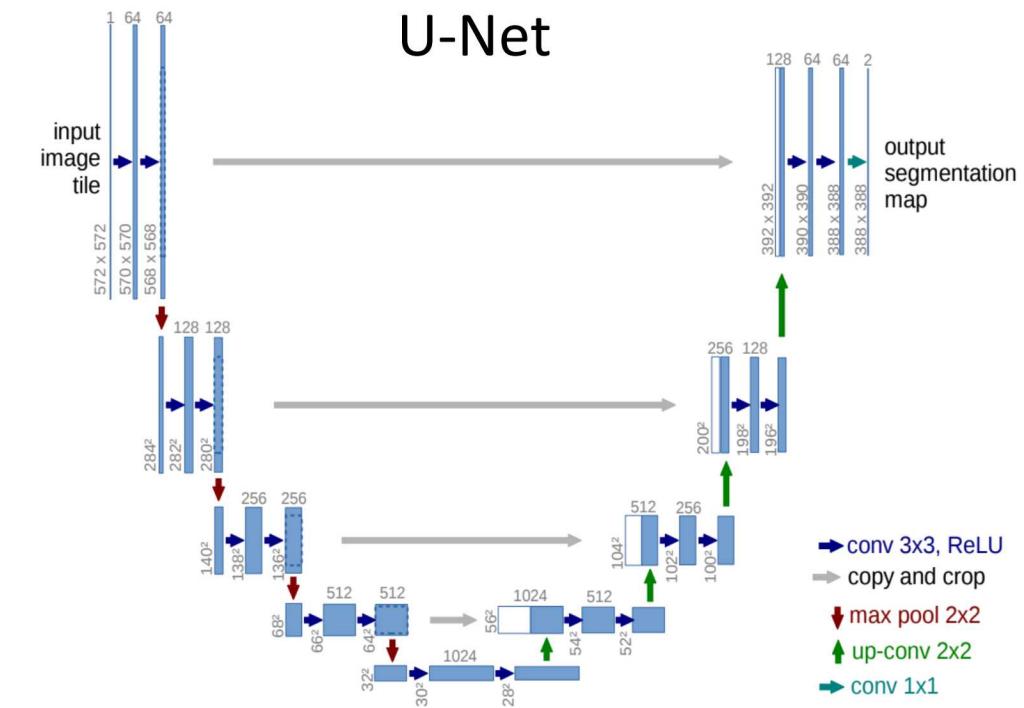
- Total 83 convolution layers; 138,453,465 trainable parameters;
- Regular neural network training is based on artificial extraction of limited image features; CNN can extract large amount of image features automatically
- Trained for 50 epochs using **one** training image plus the 7 rotation & flip transformations
- 91.7% accuracy on a pixel-by-pixel basis on training image



Training image (2048x2048)



Test image (2048x2048)



Ronneberger et al. 2015  
arXiv:1505.04597

# Convolutional Neural Network (CNN) Training

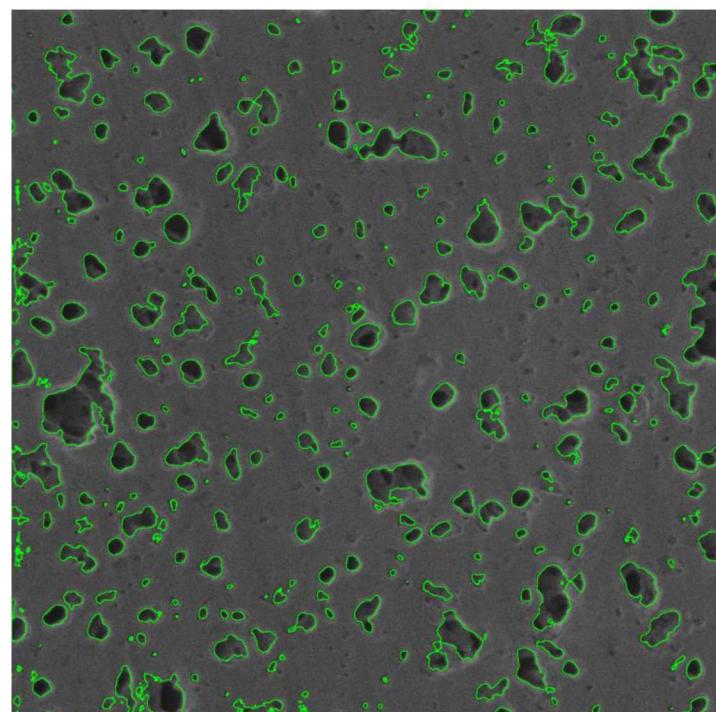


A 2048 U-Net (CNN) is built to accommodate 2048x2048 training image:

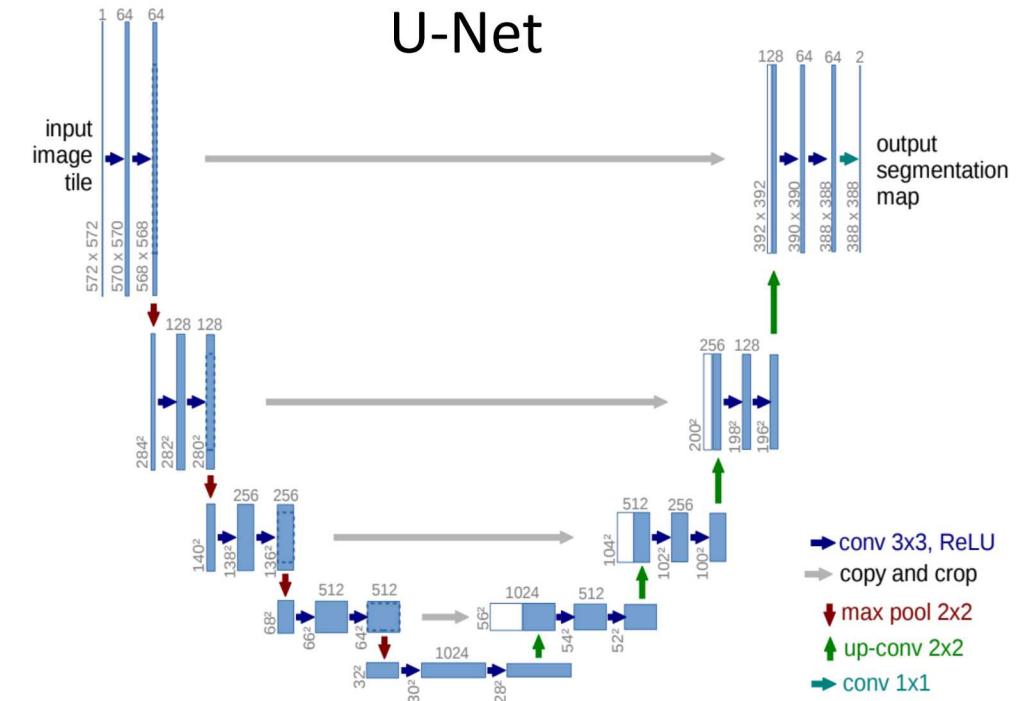
- Total 83 convolution layers; 138,453,465 trainable parameters;
- Regular neural network training is based on artificial extraction of limited image features; CNN can extract large amount of image features automatically
- Trained for 50 epochs using **one** training image plus the 7 rotation & flip transformations
- 85% accuracy on a pixel-by-pixel basis based on test image

## Confusion Matrix:

|                    |       | Predicted Non-Pore | Predicted Pore |
|--------------------|-------|--------------------|----------------|
| True Non-Pore      | 69.7% | 5.6%               |                |
|                    | 9.6%  | 15.1%              |                |
| Predicted Non-Pore |       | Predicted Pore     |                |



Test image (2048x2048)



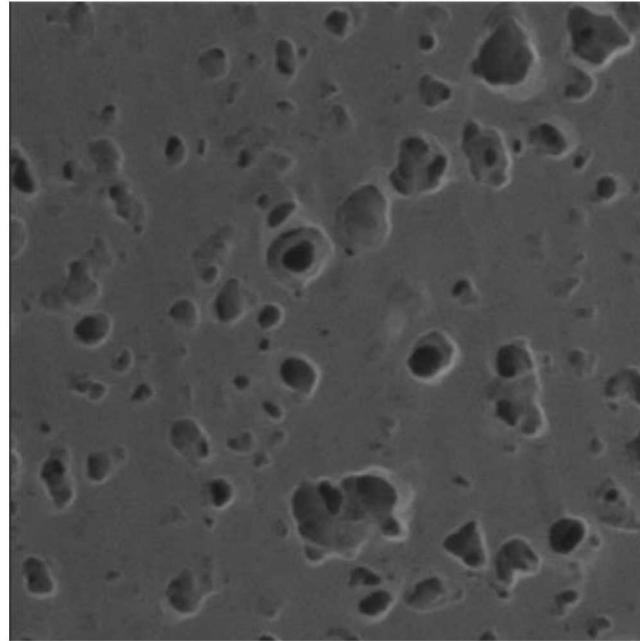
Ronneberger et al. 2015  
arXiv:1505.04597

# CNN Knowledge Transfer



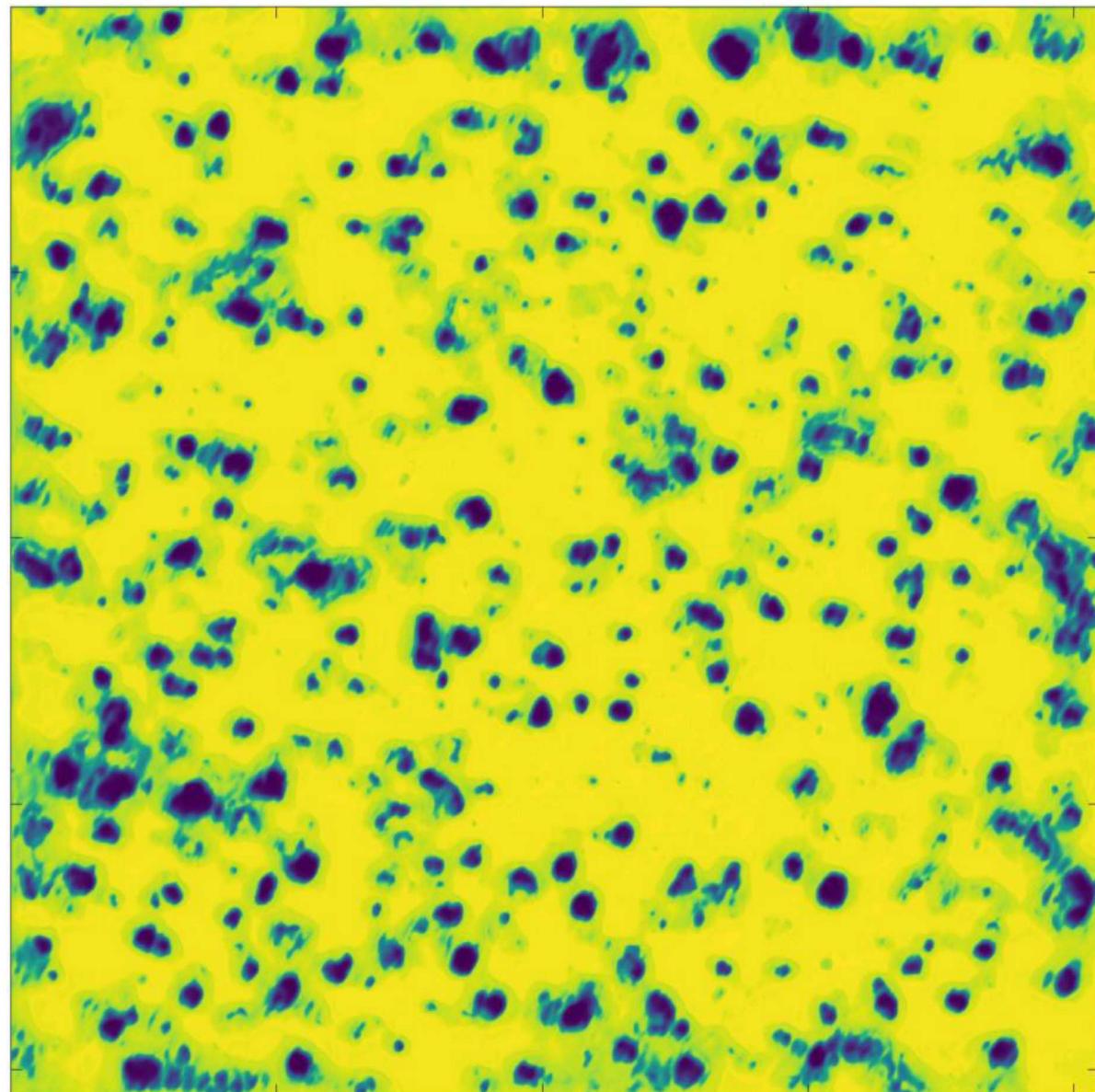
A 2048 U-Net (CNN) is used to accommodate 2048x2048 training image:

- Total 83 convolution layers;
- 138,453,465 trainable parameters;
- Trained for 50 epochs using **one** training image plus the 7 rotation & flip transformations
- 91.7% accuracy on a pixel-by-pixel basis



Trained image (**HIM**)

Test image from **SEM** which CNN has never seen!



# CNN Knowledge Transfer



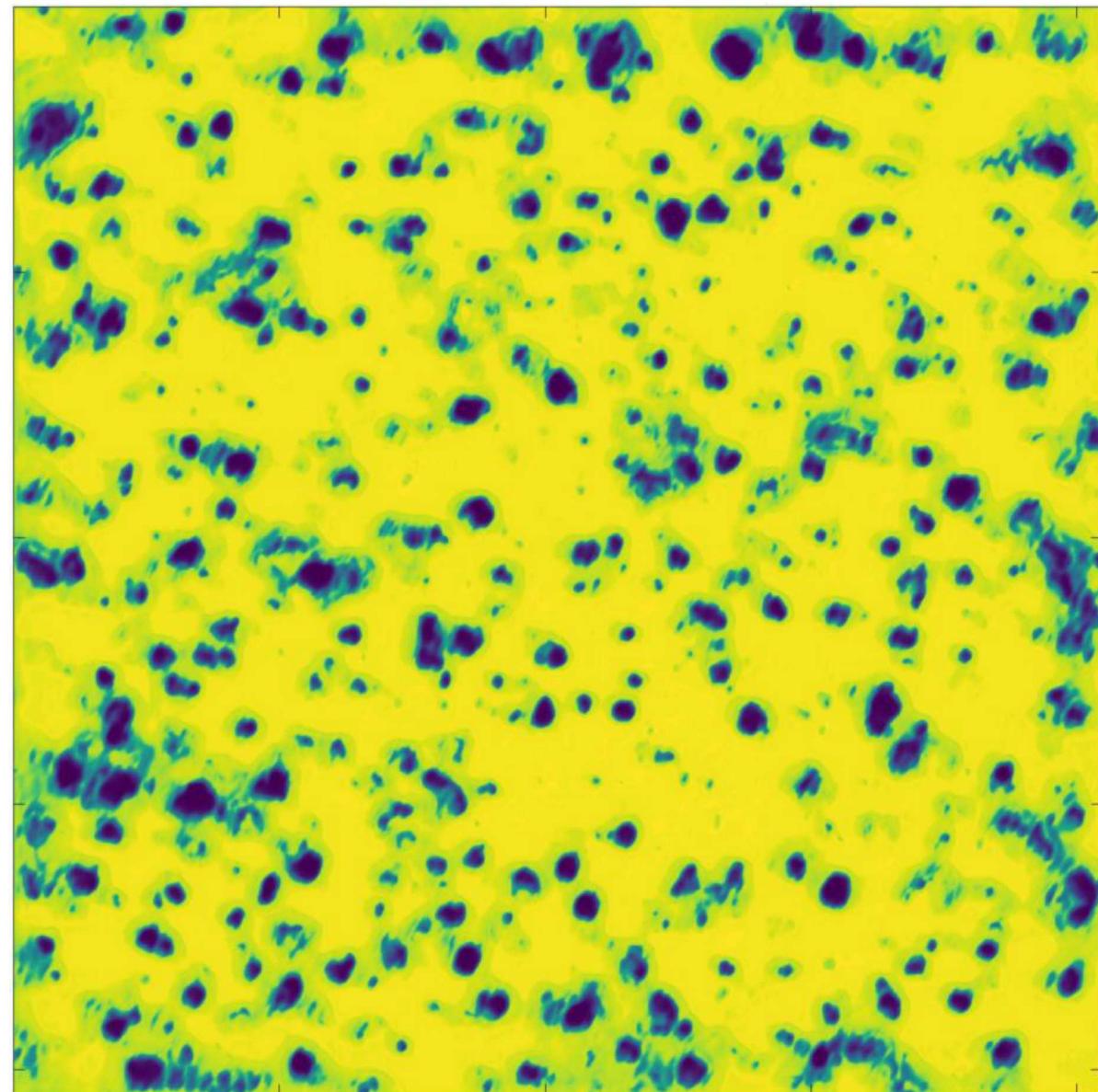
A 2048 U-Net (CNN) is used to accommodate 2048x2048 training image:

- Total 83 convolution layers;
- 138,453,465 trainable parameters;
- Trained for 50 epochs using **one** training image plus the 7 rotation & flip transformations
- 82% accuracy on a pixel-by-pixel basis

## Confusion Matrix:

|               | Predicted Non-Pore | Predicted Pore |
|---------------|--------------------|----------------|
| True Non-Pore | 72.4%              | 1.7%           |
| True Pore     | 16.3%              | 9.65%          |

Test image from **SEM** which CNN has never seen!

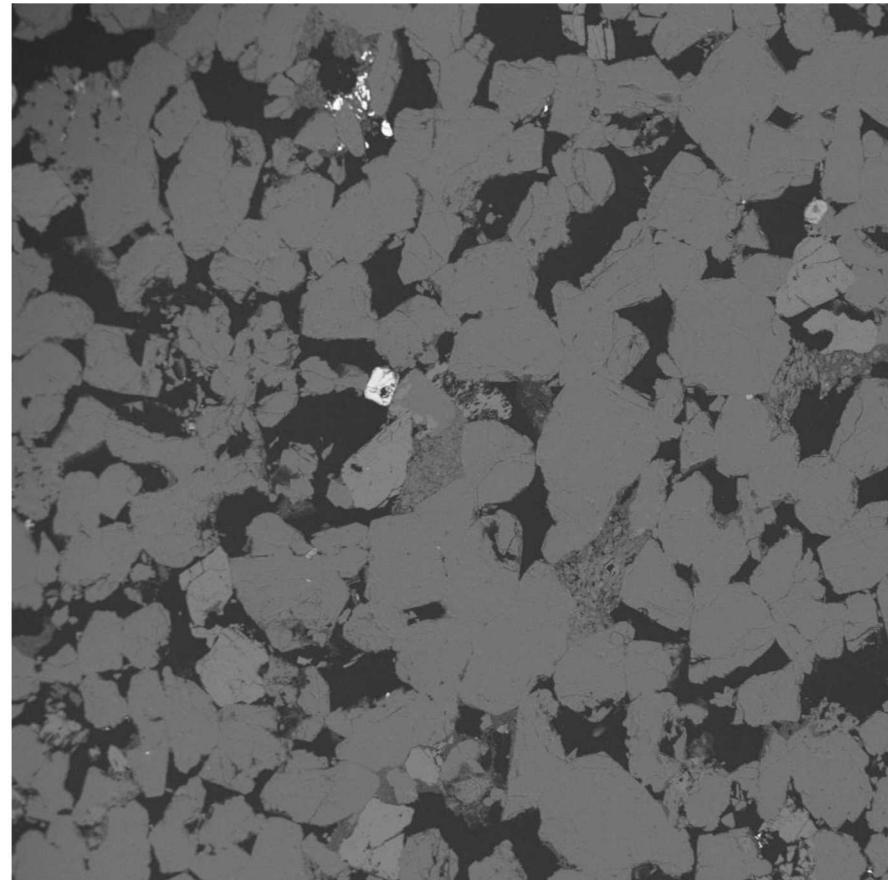
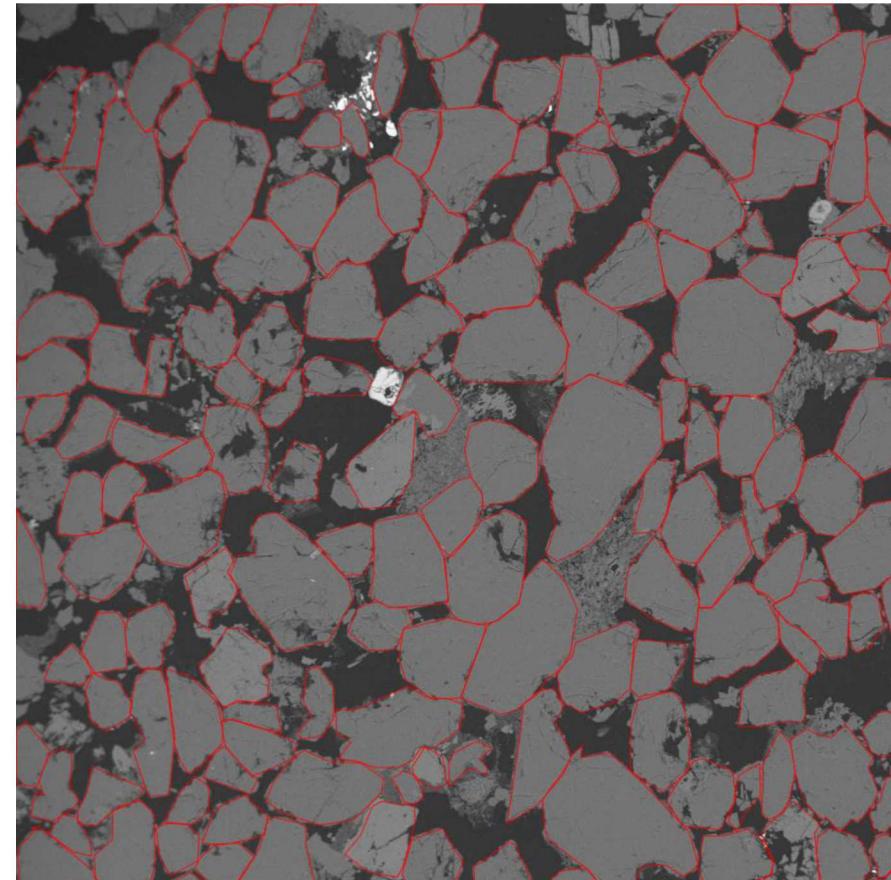


# CNN in Grain Boundary Detection (Preliminary)



Mineral granularity and aspect ratios are directly related to reservoir properties such as porosity, permeability and dialectic constant

- A 2048 U-Net (CNN) is used to accommodate 2048x2048 training image
- Three classes: mineral – boundary – non-mineral



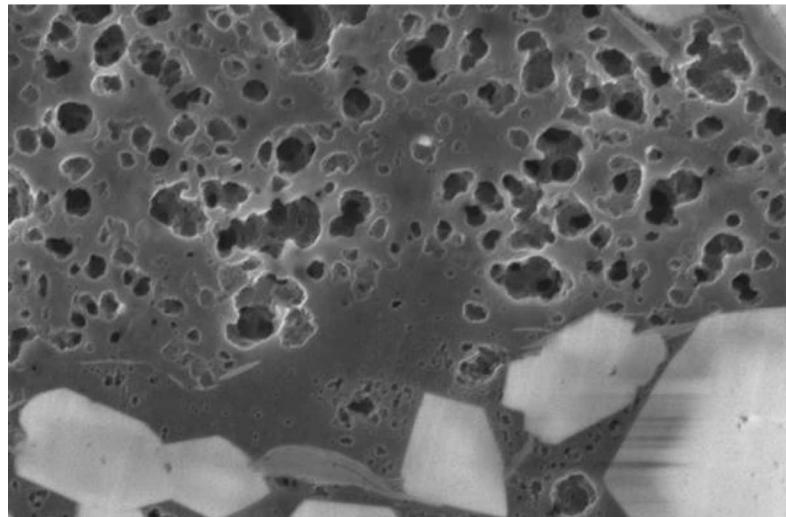
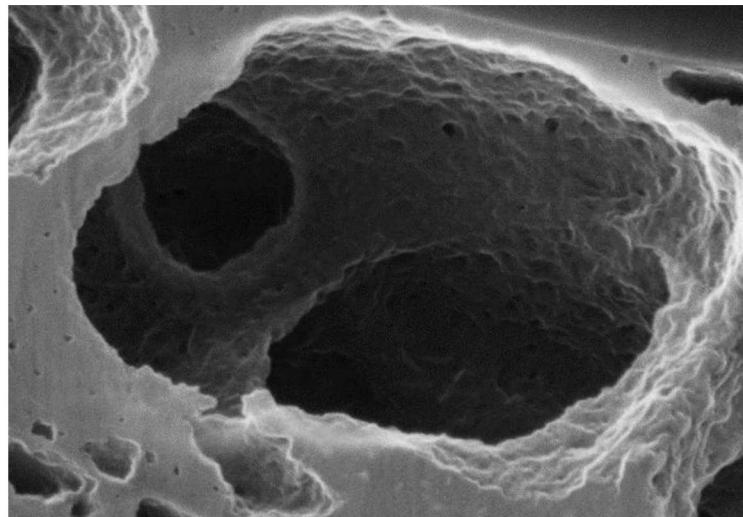
# Image Segmentation Results



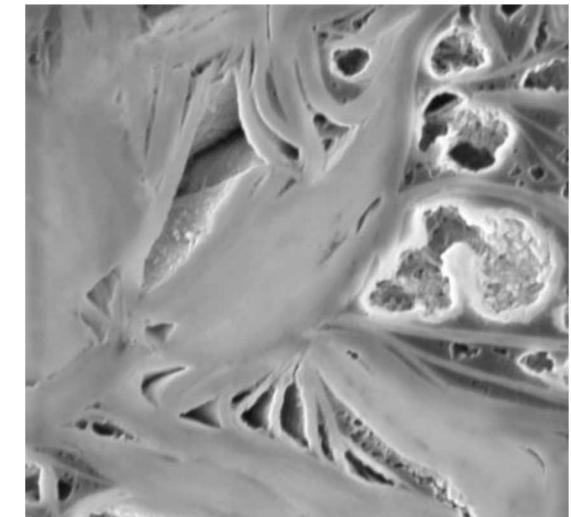
- Kerogen and mineral spatial distribution
- 3D pore network (connectivity, tortuosity...)
- Pore size distribution
- Pore morphology / stereology

## Pore morphology

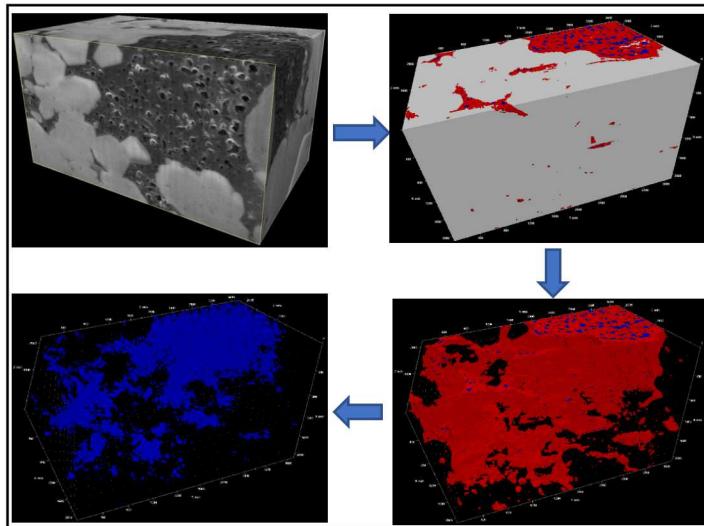
Kerogen hosted pores: rounded



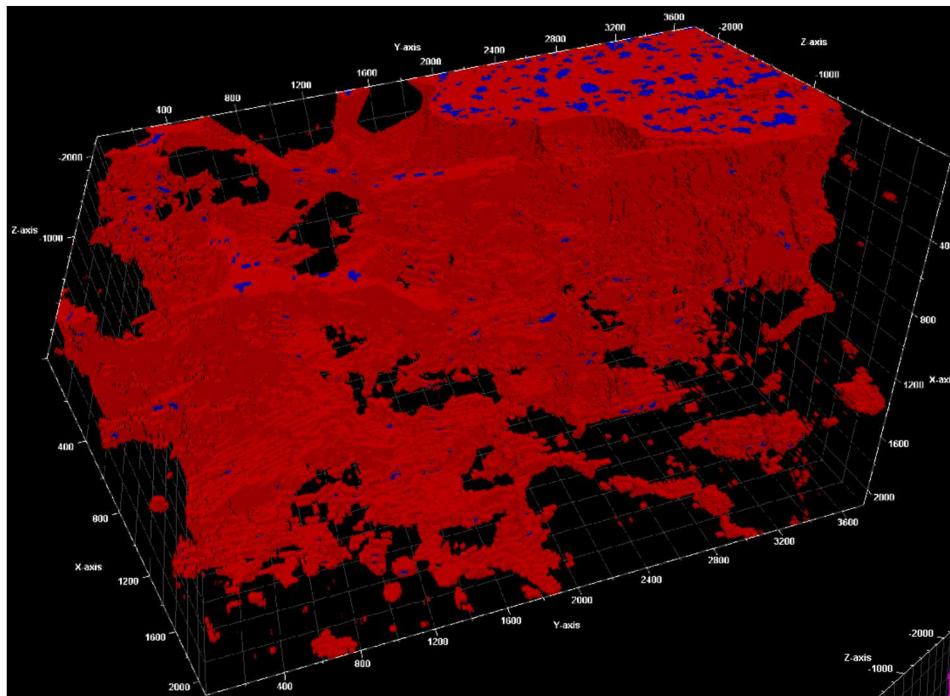
Mineral hosted pores: angular



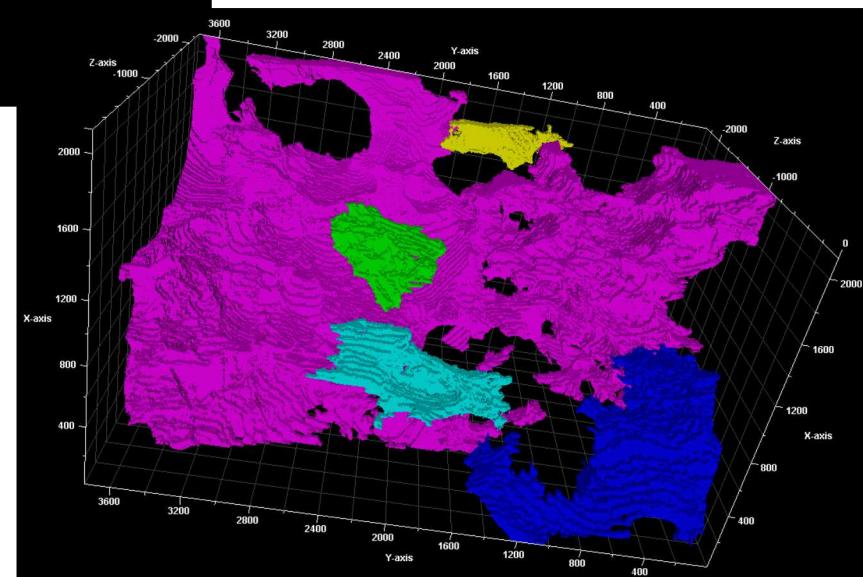
# Image Segmentation Results



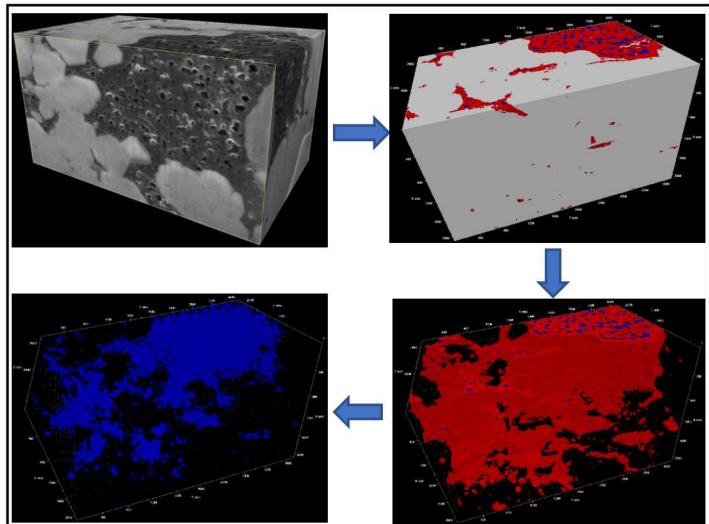
blue – pore; red – kerogen;  
white - mineral



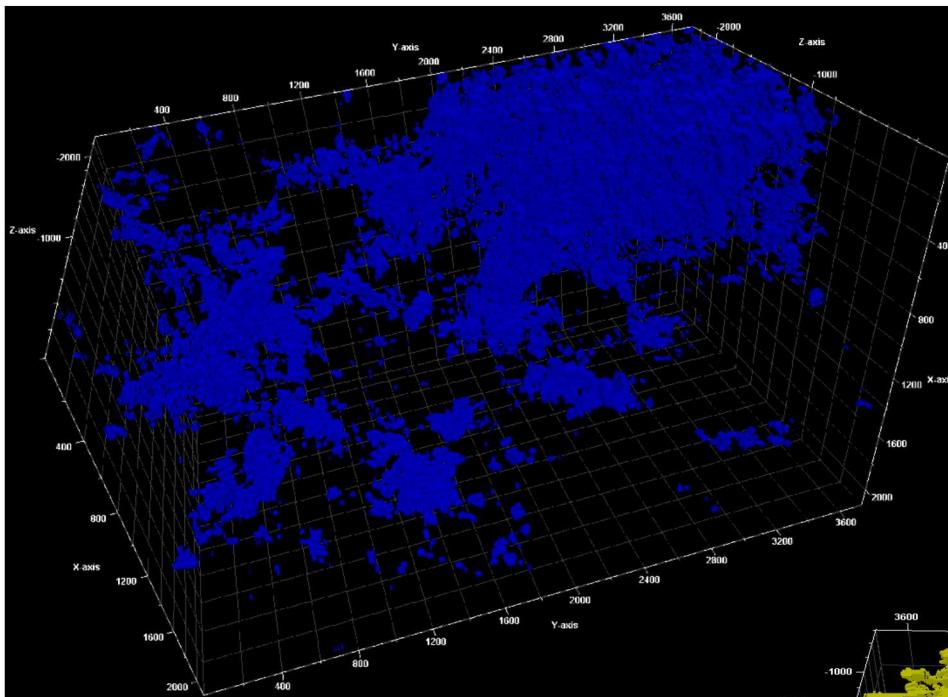
The largest connected  
kerogen body accounts  
for 91.5% of total kerogen  
volume



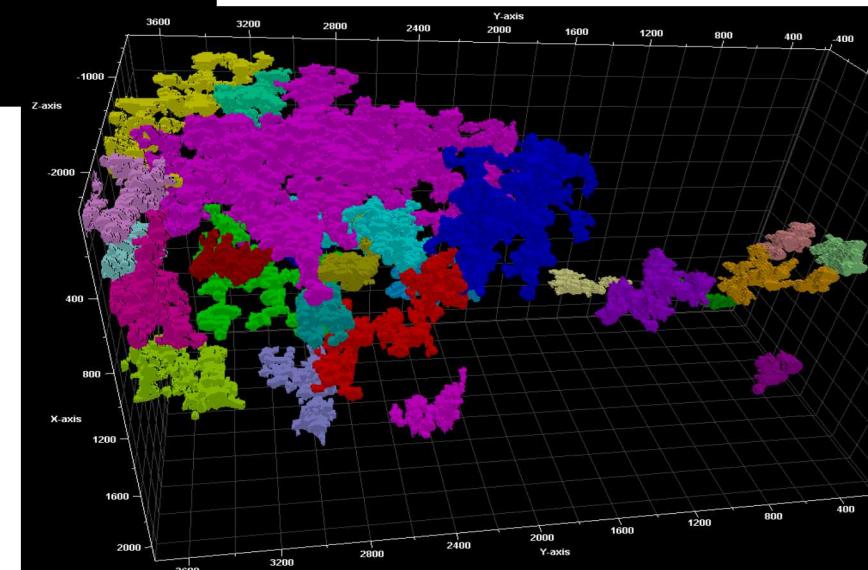
# Image Segmentation Results



blue – pore; red – kerogen;  
white - mineral



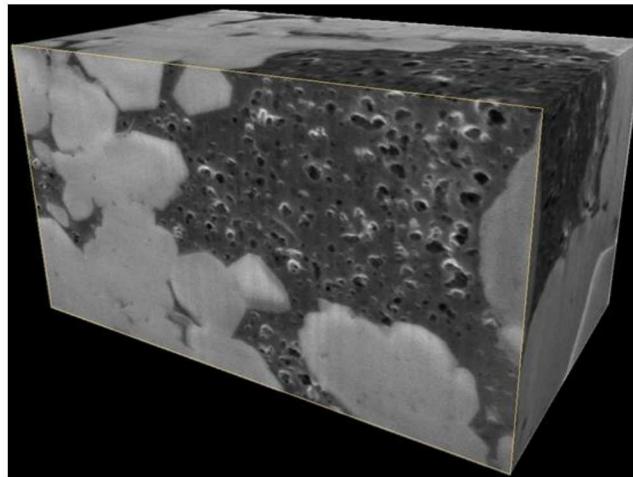
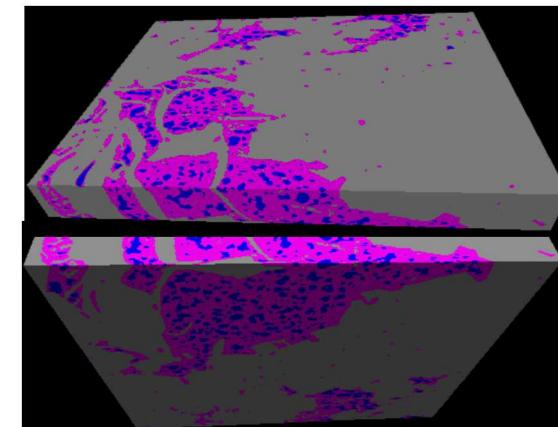
The largest connected pore body accounts for 21.3% of total pore volume



# Image Segmentation Results



|                                       | Coarse Grid                      | Intermediate Grid                | Fine Grid                        |
|---------------------------------------|----------------------------------|----------------------------------|----------------------------------|
| <b>Dimension</b>                      | 20.4 x 14.0 x 20.8 $\mu\text{m}$ | 3.74 x 2.12 x 2.31 $\mu\text{m}$ | 4.61 x 3.55 x 0.44 $\mu\text{m}$ |
| <b>Slices</b>                         | 83                               | 77                               | 88                               |
| <b>Resolution</b>                     | 26.98 x 26.98 x 250 nm           | 2.7 x 2.7 x 30 nm                | 3.47 x 3.47 x 5 nm               |
| <b>Porosity</b>                       | 0.92%                            | 2.55%                            | 3.41%                            |
| <b>Kerogen %</b>                      | 16.70%                           | 17.77%                           | 19.31%                           |
| <b>Kerogen porosity</b>               | 5.22%                            | 12.55%                           | 17.66%                           |
| <b>Largest connected Kerogen body</b> | 94.20%                           | 91.50%                           | 62.7%, 20.34%                    |
| <b>Largest connected pore body</b>    | 3.9%, 2.6%                       | 21.30%                           | 24.9%, 15.12%                    |



# Summary

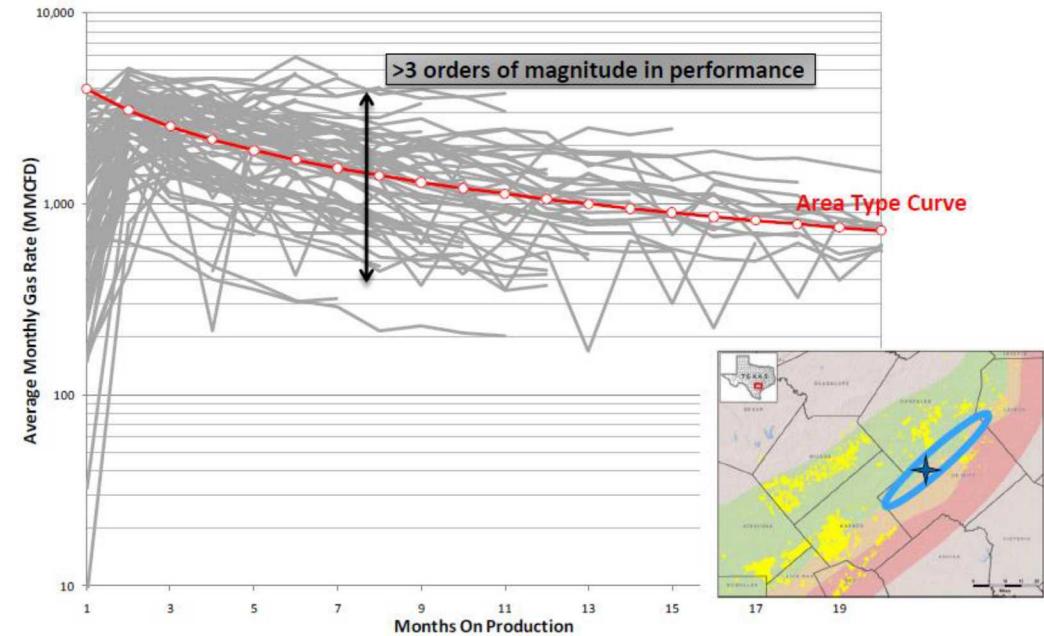


- Machine learning assisted segmentation can build Kerogen – Pore –Mineral network from microscopic images, overcoming the complexities caused by edge effect, depth of field of view issue...
- CNN has great potential when large training dataset are available
- These results reveal the connectivity for kerogen and its hosted pores in 3D are much better than in 2D
- This information can facilitate shale gas/oil production prediction utilizing “big data” analyses

# Future work



- (1) Build a transferrable trained model for images acquired across different imaging platforms, such as SEM, HIM, CT, XPS
- (2) Using deep learning for upscaling from micron scale to mm scale
- (3) Implement multiple levels of characterization for understanding decline curves:
  - Kerogen pore network
  - Kerogen distribution
  - Mineral hosted pore network
  - Natural fracture network
  - Hydraulic fracture network



Robertson (2013)