SAND2019- 3102C

Creating Stable Productive CSE Software
Development and Integration Processes in Unstable
Environments on the Path to Exascale

Roscoe A. Bartlett
Department of Software Engineering & Research
Sandia National Laboratories
https://bartlettroscoe.github.io
rabartl@sandia.gov

Abstract—The Sandia National Laboratories (SNL) Advanced
Technology Development and Mitigation (ATDM) project fo-
cuses on R&D for exascale computational science and engineer-
ing (CSE) software. Exascale application (APP) codes are co-
developed and integrated with a large number of 2" generation
Trilinos packages built on top of Kokkos for achieving portable
performance. These efforts are challenged by needing to develop
and test on many unstable and constantly changing pre-exascale
platforms using immature compilers and other system software.
Challenges, experiences, and lessons learned are presented for
creating stable development and integration workflows for these
types of difficult projects. In particular, we describe automated
workflows, testing, and integration processes as well as new tools
and multi-team collaboration processes for effectively keeping a
large number of automated builds and tests working on these
unstable platforms.

Index Terms—software engineering, software testing, testing
techniques, exascale systems, software libraries, scientific com-
puting, high performance computing

I. INTRODUCTION

The Advanced Technology Development and Mitigation
(ATDM) project was initiated in 2015 to investigate algorithms
and software challenges and solutions for future simulation
and modeling software to run efficiently on the next generation
of the exascale supercomputers.

With increases in the clock speed of individual computer
processing units (CPUs) leveling off and reaching basic phys-
ical limits, further increases in computing power are coming
from massive increases in the number of smaller processing
units (cores) that are packed onto increasingly fatter CPUs or
in Graphics Processing Units (GPUs) from hardware vendors
such as Cray, IBM, Intel, Arm, and NVIDIA. On these new
CPUs and GPUs that will be used in the first generation of
exascale computers in 2023, fine-grained parallelism must be

This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily
represent the views of the U.S. Department of Energy or the United States
Government. Sandia National Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell International Inc., for the
U.S. Department of Energys National Nuclear Security Administration under
contract DE-NA0003525.

Joseph R. Frye
Department of Software Engineering & Research
Sandia National Laboratories
jfrye@sandia.gov

used in order to exploit the full potential for parallel calcu-
lations which requires the usage of various threading mod-
els, new numerical algorithms, and specialized programming
languages and compilers (e.g. Intel KNL, OpenMP, NVIDA
CUDA). This is a significant departure from the standard
successful single program multiple data (SPMD) approach
of running single-thread exectuables on large numbers of
CPUs tied together with the Message Passing Interface (MPI)
using course-grained parallelism which has been a stable
development and deployment environment for two decades.

This shift from simpler SPMD MPI approaches to fine-
grained parallelism and accelerators represents a major dis-
ruption of the computational science and engineering (CSE)
community. The large uncertainty and risk associated with this
shift is the motivation for the ATDM projects with a primary
goal to devise strategies for refactoring many current codes to
preserve the large investment over decades of work that went
into their development.

The goal of the ATDM program is to produce some reusable
mathematical algorithms software libraries and a few demon-
stration CSE applications (APPs) that will be able to efficiently
run on DOE’s leading exascale computers by 2023.

This paper focuses on the Sandia National Laboratories
(SNL) ATDM program but many of its challenges are very
similar to other exascale software R&D efforts and some of
the solutions and lessons learned will be applicable to those
projects as well.

A. Overview of Development and Integration Efforts

The primary SNL. ATDM Application (APP) codes SPARC
[5] and EMPIRE [4] and the libraries they use are shown in
Figure-1. These APPs use solvers and other basic algorithms
implemented in the Trilinos [7] software collection. Each APP
uses a different subset of packages from Trilinos. The APPs
frequently drive Trilinos development and they need consistent
updates of Trilinos in order to make steady progress on their
own development and simulation efforts.

EMPIRE [4] is a massively parallel simulation code for
electro-magnetic plasma flows in radiation environments. It

» | SPARC EMPIRE | e %
o !
% || Kokkos Kokkos S ekl
el Developers
""""""""""""""""""" X """""'}E‘I\\\
Panzer, | | ria
Intrepid2, 1 EMPIRE/Trilinos
m Phalanx i Co-Developers
o) I |
L : y
= Other Trilinos 2nd R |
Generation Packages |
Kokkos | APP/Trilinos
J/ i‘" Integrators
» | SuperLUDist | | CGNS | | %
T Trilinos
© | NetCDF | | HDF5 | Developers
Fig. 1. SNL ATDM APPs, Trilinos packages, and TPLs (Third Party
Software)

has deep dependencies on many Trilinos packages. In addi-
tion to basic Trilinos solver packages, it uses the discretiza-
tion packages Panzer, Phalanx, and Intrepid2 to implement
the basic residual right-hand-side and matrix computations
at a low level. Therefore, many EMPIRE developers ac-
tively develop on these Trilinos packages and are essentially
EMPIRE/Trilinos co-developers as depicted in Figure-1. In
addition, EMPIRE requires Trilinos solvers and precondi-
tioners including the very actively developed 2"!-generation
MueLU package of multi-level preconditioners for exascale
architectures. Because of this intimate dependency and EM-
PIRE/Trilinos co-development, EMPIRE requires almost daily
updates of Trilinos.

SPARC [5] is a compressible computational fluid dynamics
(CFD) code for solving aerodynamics and aerothermodynam-
ics problems. It has strong required dependencies on Kokkos
[6] and SEACAS (parallel file IO and mesh handling support)
that must be built and installed before building any SPARC
software. However, SPARC only has optional dependencies
on any other Trilinos packages. While SPARC can use many
of the solvers in Trilinos such as KokkosKernels (dense linear
algebra kernels based on Kokkos) and ShyLU (sparse on-node
linear solvers based on Kokkos), it has its own native solvers
as well. While SPARC does feed requirements into some of
the Trilinos solver packages, SPARC’s dependencies on these
packages are weak. Therefore, SPARC usually does not require
frequent updates of Trilinos to keep making progress on its
own development efforts.

The EMPIRE and SPARC APP projects provide a contrast
into different approaches for multi-component development

and integration. On one end, there are limited dependencies
on software components developed outside of the APP team
(SPARC). On the other end, there are significant dependen-
cies on externally developed reusable components (EMPIRE).
Therefore, the SNL ATDM project provides an interesting test
bed for these two approaches.

Kokkos [6] is a performance portability library that provides
an abstraction layer to enable the development of kernels that
will run performantly on all architectures of interest. It has
multiple back-end implementations that use OpenMP, CUDA,
or other programming models and languages to achieve good
on-node and on-GPU parallel performance. Kokkos classes
pervade almost every line of numerical code in the Trilinos
2nd generation packages and the APPs. This embedded nature
of Kokkos is depicted in Figure-1 with the box
embedded in the boxes for SPARC and EMPIRE.

Trilinos [7] is a large collection of software packages that
provide numerical algorithms and supporting software ranging
from low-level memory management utilities to massively
parallel iterative linear solvers and preconditioners, nonlinear
solvers, optimization, uncertainty qualification, and tools and
frameworks for various discretization methods. The majority
of Trilinos development is funded by the DOE ASC program.
However, several other non-ASC projects also fund developers
to do basic algorithms research. As a result, several projects
and developers that submit changes to Trilinos are not primar-
ily concerned about exascale issues. This creates a challenge
to keep Trilinos working on the pre-exascale platforms that
drive R&D work.

This stack of software from Kokkos on up is written in
modern C++11 using advanced templating techniques that
yield portable performance on pre-exascale machines but does
so at the cost of expensive and memory intensive compilation
and linking. In fact, build times dominate test runtimes on most
development and test machines with most compilers. The high
cost of building the software makes it challenging to perform
sufficient automated testing on many of the these machines
where great competition exists for computer time.

B. Unstable Pre-Exascale System Environments

One of the chief drivers of the instability of pre-exascale
systems is that the exact hardware details of the exascale
computers of 2023 and beyond are not known (because basic
R&D on these systems is still under way). And even less is
known about the compilers, detailed programming models,
run-time libraries and other tools that will be available on
these exascale machines. As a result, early efforts to prepare
for exascale involve chasing an ever-moving target. The SNL
Advanced Architecture Test Beds effort sets up and maintains
clones of many of these intermediate pre-exascale systems and
the ATDM project uses these to drive a lot of development
and testing of the codes. On these intermediate R&D systems
compiler bugs, bugs in system software like MPI, and other
defects are fairly common and greatly impact the productivity
of developers. Many developers who started their work in
the stable SPMD MPI environment of the 2000s are not

accustomed to these types of problems. In the words of
Michael Heroux (Trilinos lead and current ECP Software
Technology Lead) “HPC is becoming a bloody sport again.”

While developers have had to accept the nature of these
unstable pre-exascale development environments, they still
need to be productive and frequent integrations of new versions
of Trilinos are needed to effectively drive development and
capabilities in the APPs.

C. Early Development and Integration Processes

In the early years of the SNL ATDM program, the APP
and Trilinos development teams used simpler development and
integration processes that are common in many CSE efforts.
Trilinos developers directly pushed to the main development
branch with no testing requirement. Each APP had their own
custom configuration of Trilinos and there was no automated
testing of these custom configurations on any platform and
little testing of any Trilinos configuration on challenging plat-
forms like CUDA/GPUs. Most APP developers were pulling
updated versions of Trilinos directly from the main Trilinos
development branch. As is common for many CSE projects,
there were many build and test failures that persisted for long
periods of time in the builds submitted to the Trilinos CDash!
site. Because of these perpetually failing builds and tests, it
was difficult to detect when new failures occurred. This made
new build and test failures difficult to identify and they often
went unnoticed until someone happened to discover a new
defect as part of their daily work.

As a result of these simpler development approaches, prob-
lems with managing clean Trilinos builds on many plat-
forms, and the challenges of these demanding pre-exascale
environments, APP developers that pulled Trilinos from the
main development branch often experienced broken builds,
broken behavior, and other problems with the software. These
problems were most common on CUDA GPU platforms and
there were long periods of time where some of the builds were
broken. Even when Trilinos built and ran on these platforms,
one would expect a large number of native Trilinos tests to
fail. This resulted in the APP development teams not running
native Trilinos tests as part of their regular development and
integration efforts with Trilinos (problems this created are
discussed in Section II-B).

Trilinos developers also had difficulty reproducing Trilinos
issues reported by APP developers because the APP’s custom
Trilinos configuration was difficult to reproduce and often
required access to machines unavailable to Trilinos developers.

This situation caused significant reductions in Trilinos and
APP developer productivity and was straining the project.

II. RECENT IMPROVEMENTS IN DEVELOPMENT AND
INTEGRATION PROCESSES

Improving the stability and productivity of development and
integration processes requires construction of better workflows
that inject more effective testing to gate different steps in

ICDash: Open-source web-based build and test results database and dash-
board provided by the company Kitware; https://cdash.org.

the process (while not imposing more complexity and over-
head than is needed to achieve the desired result). Because
the APPs require a regular flow of updates of Trilinos and
since EMPIRE development often requires co-development
with Trilinos, arguably the most attractive development and
integration workflow for this situation is Almost Continuous
Integration [3], [8]. This approach was used for integration
of Trilinos with SNL customer codes Charon in 2007 [1],
[2], Sierra in 2009 [3], and CASL VERA between 2013 and
2014. What differentiates the ATDM project being discussed
here from past projects is the added complexity and instability
of the pre-exascale development environments.
These workflows are composed of the following parts:

Basic development and integration git workflows: How
version control git repositories and branches are set up,
how merges occur, what git commands are run, etc.
Testing gates for integration steps in the workflows:
What test suites are run and must pass for each integration
step in the various git workflows.

Detecting, triaging, and correcting failures: How new
failures are detected and triaged, how work is organized
to address the failures in a timely way, how one assures
that issues are getting resolved, etc.

These workflow parts are described in the following sub-
sections for development and integration.

A. Basic Development and Integration git Workflows

The basic git workflow that has recently been adopted
for the SNL ATDM project is shown in Figure-2. In this
workflow, each APP maintains its own stable mirror of the
Trilinos git repository from which their APP developers di-
rectly pull. Trilinos developers no longer directly commit to
the main Trilinos development branch develop but instead
create commits on fopic branches which are merged into the
develop branch using GitHub Pull Requests (PR). Each of
these Trilinos PRs are tested on a small number of general
build configurations using a new PR auto-testing system (see
Section II-B). Updated versions of Trilinos develop are
tested daily against a larger set of Trilinos builds and tests
on many platforms (i.e. the “ATDM Trilinos builds & tests”).
Also, Trilinos develop is tested daily against each APP’s
own native test suite on a number of platforms (i.e. the “ATDM
APP builds & tests”). If a filtered set of Trilinos builds & tests
pass and the native APP builds & tests pass for a candidate
version of Trilinos develop, then the APP can accept the
new Trilinos version. The “APP Trilinos Integrator” for each
APP is watching over testing and integration processes for
their APP and their daily APP build & test suites run against
Trilinos develop. (Note that the workflow in Figure-2 only
covers the development and updates of Trilinos to the APPs.
The more complex git workflow elements that support APP +
Trilinos co-development are beyond the scope of this paper.)

B. Automated Testing Gates for Integration Workflows

The APP Trilinos development and integration workflow
shown in Figure-2 described above and the testing gates in

__________________ app-trilinos-repo/
master

APP
Developers

—
Must pass gating: =~
2) ATDM Trilinos
builds & tests
3) ATDM APP
builds & tests

-

Must pass gating:
1) Trilinos PR
builds & tests

APP
Trilinos
Integrator

/ i
trilinos-github/
4 develop
-

|
v

—
PN

ATDM N %4 .
Trilinos Py ATDM 1235-topic-b
Dey 1 | 1224HOPEa | Trilings Non-ATDM

Dev 2 Trilinos Dev

Fig. 2. ATDM Trilinos development and integration workflow

the workflow evolved over the calendar years 2016 through
2018. The evolution and current status of the workflows, as
well as the testing gates, are described below.

Early efforts began in mid 2016 focused on the basic stabi-
lization of the Trilinos develop branch. Efforts initially fo-
cused on encouraging pre-push testing of Trilinos using a sin-
gle standard build configuration and the checkin-test.py
tool which resulted in noticeable gains in stability. The next
effort was to get a GitHub PR testing system in place and in
early 2018 the new Trilinos PR auto-testing system was made
mandatory. The PR system was refined throughout 2018 to
address a number of issues and by early 2019 the Trilinos
PR builds & tests system contained four different build
configurations of Trilinos using three GCC compilers versions
and one Intel compiler version all on x86 Linux RHELG6 test
machines where all builds and tests must 100% pass before
merging. Even though the PR system does not directly test
the ATDM-specific configuration on ATDM platforms, it did
further improve the stability of the Trilinos develop branch
(due to requiring the builds and tests run and pass before
merging).

Both SPARC and EMPIRE also have their own native
ATDM APP builds & tests to demonstrate and protect
the development of the APP software itself. APP Trilinos
integrators have always run some subset of the APP builds &
tests against a candidate version of Trilinos before accepting
an update. But, in general, the APP codes did not run the native
Trilinos test suite on any platform using their configurations. A
major reason for this was that the Trilinos test suite had many
failing tests on almost all of these platforms (see Section I-C).
Therefore, they could not tell if failures they were seeing were
already there or were new and if these failures should cause
them concern about updating Trilinos. The APP developers are
currently still updating their copy of Trilinos based purely on
the status of their APP’s native test suite. (The one exception

is that EMPIRE does run Panzer tests to gate Trilinos updates
but no other native Trilinos package tests).

However, the approach used by SPARC and EMPIRE to
only run their APP builds & test suites as the only gate
for updating their copy of Trilinos is not ideal. The problem
is that when run-time defects are injected into Trilinos, one
can only hope to catch these defects in the downstream APP
test suite. But tricky defects are harder to detect and triage
in downstream APP tests (due to the course-grained system-
level tests on which APP codes tend to rely). This puts APP
developers in charge of doing first-round triaging of failures
that they have to report upstream to Trilinos developers (APP
developers don’t like having to debug defects in upstream
software). Another problem with not running native Trilinos
tests is that APPs tend to not to have high coverage of
upstream software functionality. As a result, many defects
in upstream software don’t get caught in the downstream
customer APP test suite. When this happens, these defects
lie in wait and then often will only get caught by customers
trying to use the APP. When this occurs, it damages the trust of
the users in the APP codes. Once the APP developers triage
the problem and determine it to be caused by an uncaught
defect in the upstream software, APP developers lose trust in
the upstream software and developers. This cycle creates a
culture of mistrust and leads to a pull-back of the usage of
external software.

The way to mitigate the problems created by running just
the APP builds & tests as the only gate to updating the APP’s
copy of Trilinos described above is to run the native Trilinos
test suite on all of the platforms and build configurations
that are used by the downstream APPs. Also, to reduce the
computational load for running the automated Trilinos builds
and tests, a single configuration of Trilinos is in the final
stages of development which merges the SPARC and EMPIRE
Trilinos configurations to allow a single configuration of
Trilinos to support both APPs. In early 2018, an effort was
started to run and clean up the native Trilinos test suite on
all of the major pre-exascale platforms required by the APPs.
This included many pre-exascale platforms such as Intel KNL
machines, IBM Power8 and Power9 machines with GPUs, and
several other systems. This new set of ATDM Trilinos builds
& tests is specifically targeted to the APP codes, runs daily
on the target platforms, and submit results to CDash with an
example dashboard shown in Figure-3.

All of the gating test suites described above require 100%
passing builds and tests on all selected builds. But most failing
tests in CSE software don’t necessarily indicate a defect in the
underlying functional code. During the process to set up the
Trilinos builds on the various target platforms, clean up the
initial failing tests, and address new failures, it was observed
that approximately 90-95% of the failing tests were not due
to defects in functional Trilinos code that impacted the
ATDM APPs but instead were defects in functionality that
APPs were not using, defects in only test code, problems with
the underlying system software, or some other non-code issue
(see section-II-C). So why then do we insist on 100% passing

Fig. 3. CDash dashboard for Promoted ATDM Trilinos builds & tests on
testing day 2019-01-04

tests for all of these gating tests suites before updating Trilinos
to an APP? The reason is that while likely 90-95% of failing
tests don’t indicate a problem with functional code impacting
customers, these test failures hide the 5-10% of failing tests
that do indicate real defects. This is exactly analogous to why
it is important to turn on strong compiler warnings and then
clean up all compiler warnings even though most compiler
warnings are benign; it is because the large number of benign
warnings hide the small number of warnings that point to real
code defects.

An example of what can happen when a project does not
require 100% passing tests and has many failing tests over
long periods of time was a recent case involving an update
of Trilinos to an important non-ATDM customer APP code.
An update of Trilinos was accepted by the customer APP that
injected a significant defect into its functional code. A few
months later, a problem was discovered with the APP code
that was eventually traced back to Trilinos. But it was not clear
what was broken. An expensive and laborious git bisection
study was performed across thousands of Trilinos commits
that required many builds of the large APP code and running
its native tests. Through that effort the change in Trilinos
causing the defective behavior was discovered. But it was
also discovered that when Trilinos was updated it had actually
triggered a new failing APP test that demonstrated the defect.
But because the APP already had so many existing failing
tests, no one noticed the new test failure that demonstrated
the new defect in Trilinos.

The lesson from the above experiences is that one must
carefully scrutinize every failing test in order to detect new
defects. Well-designed test suites typically will have just a
single test that protects a specific use case for a piece of
functionality. Therefore, a significant defect may only trigger
the failure of a single test so every test counts. The other
lesson learned is that one must not allow existing failing

tests to hide the injection of new failing tests. The tools and
processes described in Section II-C below outline how this can
be accomplished.

Finally, note that even though there is a single set of Trilinos
builds that test the union of Trilinos packages used by SPARC
and EMPIRE, the gating checks for these two APPs filter the
results differently according to their own requirements. That is,
when examining the Trilinos builds posted on the CDash site
using a CDash query, the queries for EMPIRE and SPARC
filter out different sets of build sites and Trilinos packages
that are not of interest to each particular APP. For example,
for the CDash results shown in Figure-3, the CDash analysis
and reporting tool (described in Section II-C) that determines
pass/fail for the ATDM Trilinos builds & tests for SPARC uses
a CDash query that filters out results for the sites ’sems-rhel6’,
’hansen’, and ’white’ and filters out the build and test results
for the Trilinos packages ’Phalanx’, ’Intrepid2’, and ’Panzer’
(using SubProjects filters). Therefore, failures for builds
on ’white’ or in the package "Panzer’ (in any build) will not
block the update of Trilinos to SPARC.

C. Detection, Triage, and Correction of Failures

The implementation of the integration workflow shown in
Figure-2 requires Trilinos develop to pass a selected subset
of the Trilinos builds & tests and the APP builds & tests in
order for an APP to accept an updated version. Producing a
passing version of Trilinos develop boils down to a race
between fixing existing defects verses the injection of new
defects. If the “mean-time to fail” is shorter than the “mean-
time to fix”, then (on average) the test suites will always be
broken and the APPs will never get updates of Trilinos. How
can one address this problem? One option is to move to a
release-branch workflow where a new branch is periodically
created off of develop and issues are fixed on the branch
until the gating tests all pass. However, a release-branch
workflow increases the computer time and involves more
complex workflows. The other option is to adjust processes
to keep a single Trilinos develop branch clean.

Stabilizing the Trilinos develop branch requires reducing
the time that it takes to:

detect new failures in the build or tests,

triage new failures to determine if they represent real
blocking or critical defect, and

address new failures to fix defects or deal with benign
failures.

The processes and tools for these three tasks are interrelated
and therefore need to be discussed together. First, once a
new failure on the Trilinos CDash dashboard is detected, it
must be triaged and have a Trilinos GitHub issue created to
characterize the failure and to investigate it. The act of creating
a new Trilinos GitHub issue and keeping track of which test
failures are mapped to which Trilinos GitHub issues is critical
to being able to detect new failures even while other tests are
already failing (see below). The outline for the template for
Trilinos GitHub issues is shown in Figure-4.

CC: @trilinos/<package-name>,

Next Action Status
<Status and/or next action>

Description

As shown in [this query] (<cdash-link>) the tests:
* ‘<full-test-name-1>"'

* ‘<full-test-name-2>"'

are failing in the builds:

* ‘<full-build-name-1>‘

x ‘<full-build-name-2>*

<Add more details about what is failing>

Current Status on CDash
The status of these tests/builds for the current
testing day can be found on CDash [here] (<cdash-1link>).

Steps to Reproduce

<Information on what machines can reproduce the failure>

Vo

$ cd <some_build_dir>/

$ source STRILINOS_DIR/cmake/std/atdm/load-env.sh \
<build-name>

$ cmake \
-GNinja \
-DTrilinos_CONFIGURE_OPTIONS_FILE:STRING=\
cmake/std/atdm/ATDMDevEnv.cmake \
-DTrilinos_ENABLE_TESTS=ON \
-DTrilinos_ENABLE_<package—-name>=0ON \
STRILINOS_DIR

$ make NP=16 # Or just ’'ninja -3jlé6’

$ <command-to-run-on-compute-node> ctest -3jl6

Y

Fig. 4. Markdown skeleton template for Trilinos GitHub Issues

Other than the Issue title, there are four key sections in each
GitHub Issue. Description lists the full names of the failing
tests with their associated builds, and contains information
to characterize how the tests are failing. (This allows one to
query GitHub to find issues related to failures seen on CDash.).
Steps to Reproduce provides exact commands to reproduce the
Trilinos build and/or test failure(s) (where <build-name>
can be the CDash build name). (So that Trilinos developers
can trivially reproduce the failures.) Current Status on CDash
provides links to CDash queries where the current status
of impacted builds or tests can be observed. (So Trilinos
developers can always see the current status to know if the
problems are resolved or not yet.) Finally, Next Action Status
contains a short precise statement of the current status of the
issue and the next action needed to make progress.

One of the novel aspects of this effort was creating a
system that makes it trivial for APP and Trilinos develop-
ers to (re)produce any Trilinos build configuration in any
supported target system. This is shown in the “Steps to
Reproduce” section in Figure-4 and involves sourcing the
shell script * atdm/load-env.sh <build-name>’, do-
ing the configuration with raw cmake passing a single con-
figuration file ATDMDevEnv.cmake and setting the Trilinos
packages to enable, and then executing make and ctest
to run the build and tests. The correct machine is auto-
matically detected in atdm/load-env.sh by examining
hostname and matching that to a list of known sup-
ported machines while the build configuration settings are
parsed from <build-name> argument. For example, the

build name gnu-7.2.0-openmp-static—-opt specifies
the GNU 7.2.0 compiler on the local system, using the
Kokkos OpenMP backend implementation, produces static
libraries (versus shared libraries), and creates an optimized
build of the code (versus a debug build). The command
atdm/load-env. sh then loads modules and sets up envi-
ronment variables that describe the requested build configura-
tion. The CMake fragment file ATDMDevEnv . cmake passed
to cmake then reads in this set of environment variables and
tells the build system what configuration to produce. This
simple set of commands are the same on every supported
system and the only thing that changes is the command to
run the tests on a compute node with ctest.

One of the key tasks after the creation of a new Trilinos
GitHub Issue is determining the severity/criticality of the
failure. This is done by setting one of the three ATDM Trilinos
severity/criticality labels which are as follows.

‘ATDM Sev: Critical” issues critically damage the
ability to even run the Trilinos builds. Examples include a
library build failure on an important platform (e.g. CUDA on
ATS-2) that takes out many tests; or a runtime defect in an
upstream package that takes out hundreds of tests on several
platforms.

“ATDM Sev: Blocker” issues make Trilinos unfit to be
adopted by one or more APPs but do not seriously damage the
ability to run automated builds. An example is a runtime issue
that breaks the functioning of an important Trilinos capability
used by an APP but only impacts a small number of Trilinos
tests.

“ATDM Sev: Nonblocker” issues either don’t impact
the APPs or are minor problems that should not block APPs
from getting Trilinos updates. Examples include failures in
tests for functionality that is not even used by any of the APPs;
a failure in a Trilinos test on a small number of platforms that
has been confirmed to be a bug in the test code and not in
Trilinos library code itself; or warnings that need to be cleaned
up.

One of the important realizations that we came to was
that one cannot determine the stability of Trilinos on these
platforms and the suitability of Trilinos to be adopted by APP
customers by just observing the Trilinos CDash dashboard
alone. First, while some of the “red” on the dashboard repre-
sents legitimate defects in Trilinos that should block updates,
other “red” should not block the update of Trilinos by ATDM
APP customers and fall into two broad categories.

1) Some “red” will be from random system failures such
as mpi startup failures, non-code build failures (e.g. Intel
compiler can’t communicate with its license server), and other
occasional unexplained failures (e.g. disk I/O failures), etc.

2) Some “red” will be “ATDM Sev: Nonblocker”
failing tests that are allowed to continue to fail in order
to allow developers a chance to clean them up and still get
feedback if they are successful (as opposed to disabling the
tests and then getting no feedback).

Alternatively, a lack of “red” (i.e. only “green’) may be
due to some builds not submitting results to CDash for

I FAILED (bm=1, twoif=2, twip=1, twif=2): Promoted ATDM Trilinos Builds on 2019-01-04 I

LA N
Builds on CDash (num/expected=33/33)
Non-passing Tests on CDash (num=4)

Builds Missing: bm=1

Tests without issue trackers Failed: twoif=2
Tests with issue trackers Passed: twip=1
Tests with issue trackers Failed: twif=2

Builds Missing: bm=1

Group Site Build Name Missing Status

ATDM | waterman Build exists but no test results

Trilinos-atdm-waterman-cuda-9.2-release-debug

Fig. 5. CDash analysis email part 1 for 2019-01-04: email summary line &
body header

a variety of reasons such as system maintenance, upgrades,
overloading of shared build nodes crashing the build, crashing
of jenkins jobs, overloaded batch queues not running build
jobs, and the CDash site not accepting data.

Therefore, since one cannot just look at the lack of “red”
on the dashboard, a different approach is required. To ad-
dress all of these issues, the new command-line Python tool
cdash _analyze and_report.py was developed. The
inputs to this tool are the CDash base site, the CDash project
name, the filters for the builds page cdash/index.php,
the corresponding filters for non-passing tests for the page
cdash/queryTests.php, CSV files listing the expected
builds and failing tests with known issues trackers, and the
CDash testing date (e.g. “2019-01-04"). Given that informa-
tion, this tool pulls build and test data using the CDash REST
API, analyzes the data, generates an HTML report, emails
that report to a given set of email addresses, and returns 0 for
“PASSED” and nonzero for “FAILED” to the shell.

An example email generated by this tool (broken into
two parts) is provided in Figures 5 and 6. The top part
of the email in Figure-5 shows the subject line “FAILED
(bm=1, twoif=2, twip=1l, twif=2) Promoted
ATDM Trilinos Builds on 2019-01-04~ which
gives acronyms for the types and number of failures and
other information where the acronyms are spelled out at
the top of the email body. In this example, there was one
build missing test results (bm=1). There were two new test
failures that don’t yet have issue trackers created for them
(twoif=2) (therefore they may need to be triaged and have
Trilinos GitHub Issues created for them). There was one test
with an issue tracker that was previously failing but is now
passing (twip=1) (therefore it might be fixed and one may
be able to close the corresponding GitHub issue). And finally,
it shows that there were two failing tests that already have
issue trackers (twif=2) (therefore, the Trilinos developers
already know about the failures and should be working on a
fix).

The second part of the email body (Figure-6) tabulates the
tests in each of these categories. These tables have hyperlinks

to CDash and include the number of days the test has been
consecutively passing/non-passing and history of passing/non-
passing (last 30 days). This test history is incredibly useful
and massively reduces the amount of time that it takes to
monitor the builds and tests, detect new failures, and identify
possibly randomly failing tests. In the case of the failing
test Belos_BlockGmsPoly_Epetra_File_Ex_MPI_4
(table twiof=2), it is clear that this is the first time this test
has failed over the last 30 days. But the fact that this one
test failed in two different builds on the same day suggests
that this test failure might be due to a new bug in Trilinos
instead of a random system failure. To determine more, one
must click on the “Failed” hyperlinks to examine the detailed
test output. Doing this type of top-level triaging given all
of this information takes just a few minutes. Having to get
this information directly off of CDash by running individual
queries can take hours.

This CDash reporting tool is not only used to aid in top-level
detection and triaging of new failures like described above,
but (as mentioned in Section II-B) is also used to determine
PASS/FAIL for the Trilinos builds & tests for each APP. There
is one set of CDash filter fields for SPARC and a different set
for EMPIRE. This requires changing just a few command-line
arguments to the tool.

Once new failures have been detected and triaged (resulting
in new Trilinos GitHub issues), the last step is for Trilinos
developers to follow up and resolve them in a timely way.
That, of course, can turn out the be the most difficult and
time-consuming step. There are three options for addressing
these failures where:

fixing the failure is typically the best option if the issue
can be fixed quickly;

(temporarily) disabling the failing code and/or test
is only an option if the issue has the “ATDM Sev:
Nonblocker” label; or

reverting the git commit(s) that caused the failures is
typically only done if the issue has the “ATDM Sev:
Critical” label and it can’t be fixed quickly.

In the case of new failures, finding the commits that need to
be reverted is typically easy since the builds and/or tests passed
the previous testing day. However, when standing up new
builds that need to be cleaned up, one generally cannot revert
git commits because one does not know when the change, if
any, was made that caused the failures.

D. Organizational processes

The most difficult part of the process to achieve a stable
and productive development environment for the developers is
the timely resolution of Trilinos issues. The work to stay on
top of and resolve these issues is more than any one person
can do and must engage the Trilinos Product Area Leaders.
In coordination with the Trilinos Product Area Leaders, the
SNL ATDM project has set up a number of specific roles and
responsibilities which include the:

Tests without issue trackers Failed (limited to 20): twoif=2

- . < Consecutive Non-pass Non-pass Last 30 Pass Last 30 Issue
Site Build Name Test Name Status Details
Days Days Days Tracker
sems- Trilinos-atdm-sems-rhel6-intel-opt- Belos BlockGmresPoly Epetra File Ex O - led Completed i 4 5
aile
rhel6 openmp MPI 4 — || (Failed) = =
sems- Trilinos-atdm-sems-rhel6-gnu-opt- Belos BlockGmresPoly Epetra File Ex 1 - Failed Completed 1 i 56
Faile .
rhel6 openmp MPI 4 (Failed) - -
LN}
Tests with issue trackers Failed: twif=2
B y = Consecutive Non-pass Non-pass Last 30 Pass Last 30 Issue
Site Build Name Test Name Status Details
Days Days Days Tracker
i Trilinos-atdm-mutrino-intel-opt-openmp- (| Anasazi Epetra BKS norestart test - 3 Completed
mutrino Failed ! 21 21 3 #3499
HSW MPI 4 (Failed)
. Trilinos-atdm-mutrino-intel-opt-openmp- " ; z " Completed
mutrino HSW Anasazi_MultiVecTraitsTest2 MPI 4 Failed (Failed) 24 24 0 #3499
HSW aile: ———

Fig. 6. CDash analysis email part 2: new non-triaged failures (twoif)

Top-level ATDM Trilinos Triager who gets the daily
CDash summary emails, creates new ATDM Trilinos
GitHub Issues, and hands them off to the

Trilinos Product Area Leads who examine the Issues
in their area, find Trilinos Developers and supporting
funding, then follow up to make sure the Issues get
addressed (according to priority); and the

Trilinos Developers who resolve the issues.

These roles and this process are in their infancy but the APP
teams are already starting to see the benefits.

III. CONCLUSIONS AND FUTURE WORK

Pre-exascale platforms, programming environments & mod-
els present challenges that the CSE community has not faced
in several decades which are exacerbated due to the greater
amount of more complex algorithms and software being inte-
grated into single applications. Experience in the SNL ATDM
program has shown that improving developer productivity in
these changing pre-exascale environments requires better
designed development and integration processes and better
automated testing. One must carefully scrutinize every failing
test in order to detect new defects and must not allow existing
failures to hide new failures. Also, effectively staying on top
of a larger number of automated builds and tests on these
platforms requires an analysis tool that takes a broad view
of build and tests results to show trends, commonality, and
history.

While much progress has been made to improve stability
and productivity, the APP’s updates of Trilinos are not yet
gated on 100% passing supporting ATDM Trilinos builds &
tests. There are some planned improvements that will facilitate
this such as a) allowing “ATDM Sev: Nonblocking” tests
to continue to fail but not trigger global failure, and b)
detecting and automatically filtering out occasional known
random system failures. In addition, work is needed to make
the processes less labor intensive which includes a) simplifying

and existing known failures (twif) (leaving out the table for "twip’)

creation of new GitHub Issues, and b) creating a tool to
automatically update GitHub Issues about the status of their
associated tests. The latter would automatically notify Trilinos
developers when associated failing tests start passing and add
regular reminders of still-failing tests.

REFERENCES
(1]

R. Bartlett. Daily integration and testing of the development versions
of applications and Trilinos. Technical Report SAND2007-7040, Sandia
National Laboratories, 2007.

R. Bartlett and et. al. ASC vertical integration milestone.

Report SAND2007-5839, Sandia National Laboratories, 2007.
R.A. Bartlett. Integration strategies for computational science. In Software
Engineering for Computational Science and Engineering, 2009. SECSE
"09. ICSE Workshop on, pages 35 —42, 23-23 2009.

Matthew Tyler Bettencourt, Eric C Cyr, Richard Michael Jack Kramer,
Sean Miller, Roger P. Pawlowski, Edward Geoffrey Phillips, Allen C.
Robinson, and John N. Shadid. Empire - em/pic/fluid simulation code. 8
2017.

Paul Crozier, Micah Howard, William J. Rider, Brian Andrew Freno,
Steven W. Bova, and Brian Carnes. Advanced technology and mitigation
(ATDM) SPARC re-entry code fiscal year 2017 progress and accomplish-
ments for ECP. 9 2017.

H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:
Enabling manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed Computing,
74(12):3202 — 3216, 2014. Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoek-
stra, Jonathan J. Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R.
Long, Roger P. Pawlowski, Eric T. Phipps, Andrew G. Salinger, Heidi K.
Thornquist, Ray S. Tuminaro, James M. Willenbring, Alan Williams, and
Kendall S. Stanley. An overview of the trilinos project. ACM Trans.
Math. Softw., 31(3):397-423, 2005.

Andrew E. Slaughter, John W. Peterson, Derek R. Gaston, Cody J.
Permann, David Andr, and Jason M. Miller. Continuous integration
for concurrent moose framework and application development on github.
3(1), 2015. Exported from https://app.dimensions.ai on 2019/01/27.

(2]
(3]

Technical

(4]

(3]

(6]

(71

(8]

