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Nanoscience: Size-Dependent Material
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Photophysical/Photochemical Processes

in Semiconductor Nanoparticles
(Roduner, 2006)
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Size-dependent CdS band gap

(Liining et al., 1999, Sold State Communication)
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31 Nanogeochemistry
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Nanogeochemistry: Understand emergent
properties of geochemical systems under
nano-scale structural constraints or
organizations.

Rule of thumb: <100 nm
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Colloid-facilitated radionuclide transport

‘Free’ neptunium Mineral colloids

http: / /www.bbe.com/news/uk-england-cumbria-21253673 https://eesa.lbl.gov/radioactive-contamination-over-geologic-time/

Key radionuclides: .
Pu-239, Th-230, Am-241 - Strong interaction (colloids) Colloids: ~1 - 1000 nm

U-238, Np-237 - Moderate interaction Nanoparticles: ~1 - 100 nm
[-129, Tc-99 - Weak interaction (anions)
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Surface charge density (C/m?)

Surface charge and sorption capability of nanoparticles

Partilce size (nm)

Surface charge density predicted by Monte-
Carlo simulations for goethite nanoparticles
(Abbas et al., 2008)
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6 I Self-inhibiting mechanism for nanoparticle dissolution
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Self-inhibiting mechanism (Tang et al., 2004)
. Resistance to dissolution
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Unconfined

Effects of Nanopore Confinement
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s | Model Systems for Studying Nanopore Confinement

Wang et al. (2008)
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Model Systems for Studying Nanopore Confinement
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ol Nanoconfinement and lon Sorption
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Nanopore confinement enhances ion sorption onto a solid-water interface
for both cations and anions.

Wang et al., 2003, Mat. Res. Soc. Symp. Proc.; 2003, Geology




Zn?* sorption on to controlled pore glass
(Nelson et al., 2014)
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Cu(ll) sorption onto mesoporous silica
“" (Knight et al., 2018)
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i | Effect of Nanopore Confinement on Water
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Postulations:
Water molecules in nanopores are more 4
restrained.

H,Si0, = SiO,(s) + 2H,Opptn

M(H,0) " = M#" + nH,O inner sphere

Na* + CI = NaCl° ion pairing
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Senapati & Chandra, 2001, J. Phys. Chem.



Uranyl Desorption from Synthetic Porous Goethite
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Can an anion such as iodide get into interlayers of clay materials?
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s | Structure-function study of clay materials

7 clays under

consideration: ai clays obtained
from the clay bank repository (Purdue Univ.)
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Miller et al. (2015)

Montmorillonite
Palygorskite
Sepiolite

Sorption experiments:

* N, BET (external surface)
* Methylene Blue (MB) (total surface including
interlayer)
* Na-exchanged clays
 Variable amounts of MB were added until
clay surface was saturated
« BaCl, Exchange (total surface including
interlayer)
* Excess of barium displaces native cations
* Measure native cation release
* Todide
* Solid:Liquid ratio: 100g/L
* No specific pH control; ‘natural’ pH of clay
* Seven day reaction time

Concentration NaCl | NaBr | KCl
(M)
1.0 X
0.1 X X X
0.01 X




lodide uptake is dependent on ionic composition of
171 swamping electrolyte.

K, [mL/g] (Std. Dev.)
CEC meq/100g

NaCl NaBr KCl

4.61 1.61(0.28)  0.02(0.63)  -0.01(0.22)
Ripidolite 6.03 1.13(0.38)  -0.16(0.72)  -0.31(0.17)

Layered - 27.61 0.54(0.12)  0.13(0.002)  -0.50(0.24)
Illite.Smectite 30.39 0.38(0.08)  -0.01(0.11) -0.49(0.11)

Jj Montmorilionite 151.92 -0.32(0.35)  -0.58(0.07)  -1.69(0.90)

A _— Sepiolite 8.98 0.01(0.28)  0.79(0.14)  0.11(0.30)
W Palygorskite 29.22 0.24(0.30)  1.26(0.05) 0.99 (0.17)

All electrolytes at 0.1M




Kp values trend with total surface area, suggesting
interactions with negatively charged surfaces.

25 ¢
2.0 f
15 ¢ }
B 10 {
g 0.5 ; i 3
PN et ahiebb Ll F-"""":
g 05 | *
Q L
Y -1.0 1
45 W 00M *
i ¢ 0.1M
20 F a4 10M
25 ¢t
7
BET S.A. (m?/g)
O O O O
O) s O,
@) ®

70

K, value (mL/g)

2.5 SR
2.0 :
15 [ $ !
10 | X %\\\ :
05 | \i\i \f\i\ ________ x-
0.0 i o e MRS <\-\:--i-\-‘-\:\-\¥'—
'0-5 : \*\\\ :
0T m 00m \\\*j
15 + 0.IM i
2.0 A 1.0M ]

1 10 100 1000

Total S.A. (m?%/g)




Data is consistent with ion pair formation caused by reduced
19 | dielectric constant of confined water.
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Senapati & Chandra, 2001, J. Phys. Chem.
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2t I Manipulation of Layered Double Hydroxide (LDH)
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22 1 Pertechnetate Sorption on LDHs
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Pertechnetate Sorption on LDHSs (cont.)
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2«1 Concluding remarks

Emergent properties

> Novel mineral-fluid interface chemistry may
emerge when the dimension of one of the phases
is reduced to nanometers.

Texture matters!

° Measurements on “isolated”, unconfined surfaces
may not be representative of actual geologic
materials.

Perspectives
> Progress in nanoscience & technology
> Emergence of new properties (~40 identified in

Wang 2014)

Geochemical implications
> New perspectives for understanding fundamental
geochemical processes
> Shale gas/oil
> Nanofluidics and radionuclide transport in the subsurface
> Development of novel materials for
environmental applications

> New generation of buffer materials for waste isolation

Graphene sensor

(Hadlington, 2008)

.
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