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Silicate glass dissolution: knowns & unknowns @2 () =,
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Borosilicate dissolution: Surface layer formation in @&xErcy @’-‘f‘-
silica saturated solution
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Borosilicate glass dissolution in deionized water

at 50 °C
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Oscillatory dissolution/precipitation eERy (i)

Borosilicate glass at pH =~0, T = 150 °C

Geisler et al. (2010)
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Oscillatory silicate mineral dissolution OciErey (i) =,
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Self-organization: Pattern arising from internal @riicisy @gﬂ_
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pH-dependent dissolution: Catalyzed by H+ and T @a_:
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Positive feedback in silicate dissolution
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Mathematical model
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Alteration products
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where

C’ - Cation concentration within the boundary layer
C, — Cation concentration in the bulk solution (outside the altered zone)
D, - Diffusion coefficient of cations in the altered zone
D._ - Diffusion coefficient of dissolved silica in the altered zone
L, — Thickness of the boundary layer at the dissolution interface
L, - Thickness of the altered zone
k4 — Reaction rate constant for silicate material dissolution
k, — Reaction rate constant for silica mineral precipitation
n — Order of silicate dissolution reaction with respect to cation
5" - Silica concentration within the boundary layer
Sy — Silica concentration in the bulk solution
5 — Equilibrium silica concentration for material dissolution
- Equilibrium silica concentration for silica precipitation
t - Time
v — Molar ratio of cations (mainly Na*) to Si** in the pristine silicate material
3 — Positive constant characterizing the catalytic effect of cations on silicate material dissolution

Wang et al., 2016, Scientific Reports
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Nonlinear dynamics of silicate dissolution ERERGY ()
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Predicted time scale: hours to years
Predicted spatial scale: sub-micron to tens of microns Wang et al., 2016, Scientific Reports

Archeologic study of ancient Roman glass shows that each
band might have formed over a year.
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Alteration resumption and zeolite formation ERERGY (i) e,
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Eventually, the dissolution rate overtakes the mass exchange rate, leading
to a “runaway” situation with a sharp increase in the cation concentration
at the interface and therefore the dissolution rate.
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Silicate glass dissolution
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Morphological evolution of dissolution front Laavie
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Morphological instability analysis ERERGY (i) e,
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Predictions

Corrosion product textures

Coherent wavy banding
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Planar banding
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Corrosion product textures: Observations ERERGY ()
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Limited by zeolite precipitation

= Complex silicate material dissolution behaviors can
emerge from a simple positive feedback between
dissolution-induced cation release and cation-
enhanced dissolution kinetics.

Resumption
rate

Oscillatory
dissolution

Dissolution rate

leached layer

= This mechanism enables a systematic prediction of the
occurrence of sharp dissolution fronts, oscillatory | EE———
dissolution behaviors, multiple stages of glass
dissolution and morphological instability.

Possiblepresence of

= |t provides a new perspective for predicting long-term
silicate weathering rates in actual geochemical systems
and developing durable silicate materials for various
engineering applications.
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