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Silicate glass dissolution: knowns & unknowns e!iiffnGer-:
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Borosilicate dissolution: Surface layer formation in ONERY
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silica saturated solution
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Borosilicate glass dissolution in deionized water
at 50 °C
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Oscillatory silicate mineral dissolution
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Self-organization: Pattern arising from internal
dynamics
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pH-dependent dissolution: Catalyzed by H+ and
OH-
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Positive feedback in silicate dissolution WADI&
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Mathematical model egfigirdy
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Pristine glass Alteration products
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- Cation concentration within the boundary layer

Co - Cation concentration in the bulk solution (autside the altered zone)
▪ - Diffusion coefficient of cations in the altered zone

Ca Ds - Diffusion caefficient of dissolved silica in the altered zone
LI -Thickness of the boundary layer at the dissolution interface

SO 
4-Thickness of the altered zone
kd - Reaction rate constant for silicate material dissalution
kp - Reactian rate constant for silica mineral precipitation
n - Order of silicate dissolution reaction with respect to catian
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So - Silica concentration in the bulk solution
- Equilibrium silica concentration for rnaterial dissolution
- Equilibrium silica concentration for silica precipitation

t - Tirne
or - Molar ratio of cations (mainly Nal to SO+ in the pristine silicate material
- Positive constant characterizing the catalytic effect of cations on silicate material dissolution
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Nonlinear dynamics of silicate dissolution
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Self-sharpening & morphologic instability of a
reaction front
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Alteration resumption and zeolite formation Nuclear Energy
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Morphological evolution of dissolution front
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Morphological instability analysis Nuclear Energy
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Corrosion product textures: Predictions
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Corrosion product textures: Observations Nuclear Energy

D

Pristine

glass

Wang et al. (2018)

Roman glass from seabed
Dal Bianco et al. (2004)

18



Concluding remarks OENERGY graz
Nuclear Energy

• Complex silicate material dissolution behaviors can
emerge from a simple positive feedback between
dissolution-induced cation release and cation-
enhanced dissolution kinetics.

• This mechanism enables a systematic prediction of the
occurrence of sharp dissolution fronts, oscillatory
dissolution behaviors, multiple stages of glass
dissolution and morphological instability.

• It provides a new perspective for predicting long-term
silicate weathering rates in actual geochemical systems
and developing durable silicate materials for various
engineering applications.
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