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21 Outline

Motivation for Studying Fiber Reinforced Polymers in Fires
These materials are different than traditional engineering materials

This talk will focus on Carbon Fiber Epoxy Composites

Computational Model
Description of the computational strategy

Mechanism creation from TGA for a carbon fiber epoxy composite

Parameters explored in uncertainty estimation

Model Validation and Uncertainty Estimation
oComparison of prediction to experiments
oSensitivity of input parameters to temperature and mass loss predication
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Motivation for Studying Carbon Fiber Epoxy
omposites in Fires



4 I Fiber Reinforced Polymers

An increasing number of engineered
systems that require high strength
and low weight use fiber reinforce
polymers
Aerospace, automotive, sporting goods,
electronics, transportation, prosthetics...



51 What is a Fiber Reinforced Polymer?
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A.

Fiber Reinforcement
(e.g. Carbon Fiber)

Polymer Matrix
(e.g. Epoxy)

Fibers provide strength and
rigidity to the polymer,
while the polymer provides
structure to the fibers.

Carbon fiber epoxy
composites are an example
of a fiber reinforced
polymer



61 The Trouble with Fiber Reinforced Polymers

The replacement of metals with
fiber reinforced polymers cause
concerns in fire environments.

The polymers and fibers can be
fuel for the fire, were as
traditional building materials are
inert.



71 Objective of this Work

Validate a computational model of pyrolyzing and smoldering carbon
fiber epoxy composite using cone calorimeter data.

Compare temperature and mass loss data

Evaluate uncertainty and sensitivity of temperature and mass loss to
variation of input parameters





91 Experiments

100 mm

Sample thicknesses: 29 mm

Sample holder material: Aluminum

Heat flux: 30 kW/m2

Temperature and mass loss recorded



10 1 Computational Model

Heat Flux

Carbon Fiber Epoxy Composite

Contact Resistance

Sample Holder

Convective and
Radiative Cooling

2D FEM Model in Sierra Thermal/Fluids

Pyrolysis and smoldering mechanisms

Continuity, species, and enthalpy equations
Solved for in condensed and gas phases

Gas velocity solved using Darcy's approximation
for flow through a porous material

O Ideal gas law used to relate density to pressure

O Radiative and Convective boundary conditions

Material Properties
Composite Effective Conductivity, Porosity,
Permeability

Function of reaction

Other material properties

Constant or function of temperature



111 Pyrolysis and Smoldering Mechanism

1.00

0.95

-10
(L)

0.90

Li 0 85

0 0.80

0.75
200

Nitrogen Purge Gas

, 1.0
1

0.003, ;Lifi 0.8
u 03
,—.1

0.002 — -a 
0.6

H c.)-a •L' 0.4
E To

-0.001-0 E
5- 
'
0 2

o 
z

-0.000 0.0

460 660 86O 200 460 660

Air Purge Gas

Temperature [C] Temperature iC]
800

(1).(:)06

(1002



121 Pyrolysis and Smoldering Mechanism
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131 Pyrolysis and Smoldering Mechanism
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14I Model Parameters for Uncertainty Evaluation

27 Parameters

Each Composite Phase:
Conductivity (k)

Volumetric Heat Capacity (pcp)

Permeability (K)

Radiative Conductivity (ke)

Emissivity (E)

Initial Carbon Fiber (%CF)

Each Holder Material:
Conductivity (k)

Volumetric Heat Capacity (pcp)

Emissivity (E)

Each Reaction:
Pre-Exponential Factor (A)

Activation Energy (Ea)

Stoichiometric coefficient (v)

Heat Release (H)

Boundary Conditions:
Heat Flux (q)

Convective Heat Transfer (h,)

Contact Resistance (Rc)



Model Validation, Uncertainty, and Sensitivity



16 1 Experiment

Scale

Thermocouples
100 mm

Sample thicknesses: 29 mm

Sample holder material: Aluminum

Heat flux: 30 kW/m2

Temperature and mass loss recorded

Flaming Ignition: No



171 29 mm Thick Sample — 30 kW/m2
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18 I 29 mm Thick Sample — 30 kW/m2
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20 1 Summary

Computational Model
2D FEM Model, smoldering and pyrolysis, gas and condensed phase

Mechanism created from TGA using both nitrogen and air data

Model Validation and Uncertainty Estimation
27 input parameters varied to improve understanding of uncertainty

0 Mass loss showed good qualitative agreement

()Ratio of carbon fiber to epoxy, followed by volumetric heat capacity and
conductivity were most important the mass loss prediction

Temperature over predicted in the middle of the sample

Volumetric heat capacity and conductivity were most important to the
temperature prediction



21 I Future Work

Improve material characterization, particularly conductivity, specific
heat, and ratio of carbon fiber to epoxy
Anisotropic properties

Model gas phase combustion to increase range of experiments that
can be compared to

Couple solid phase model to gas phase model
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23 I Mode Parameters
Parameter Value / Correlation Uncertainty Units
Conductivity (k)

W/(mK)
Epoxy 0.145 ±35%

Carbon Fiber 0.335 ln(T) — 1.8257 ±35%
Char 0.029 ±70%

Residue 0.00725 ±70%
Density (p)

kg/m3
Epoxy 408 ±20%

Carbon Fiber 952 ±20%
Char 650 ±20%

Residue 2000 ±20%
Specific Heat (cp)

J/(kgK)
Epoxy 866 ±20%

Carbon Fiber 4.0997 T — 369.12 ±20%
Char 936 ±20%

Residue 866 ±20%
Permeability (K)

m2

Epoxy 2.42e-15 -90% +900%
Carbon Fiber 2.42e-14 -90% +900%

Char 2.83e-12 -90% +900%
Residue 2.42e-11 -90% +900%

Radiative Conductivity (ke) 16/(3 * 5000)6T3 -60% +400% W/(mK)
Emissivity (E) 0.91 -10% + 8% -
Initial Carbon Fiber (%CF) 70 ±10% %



241 Model Parameters

A E. v H
[1/s] [J/kmolj [-] [1cf/kg1

Reaction 1 a 3.33 e6 ±10% 1.13 e8 ±0% 0.2 ±20% 0 ±10 [kJ/kg]
Reaction lb 1.33 ell - 1.47 e8 - 0.7 - 0 -
Reaction 2 1895 ±10% 9.15 e7 ±0% .0001 ±0% 12730 ±20%
Reaction 3 9.48 e6 ±10% 1.90 e8 ±0% .0001 ±0% 24770 ±20%



25 1 Experiments

Scale

10n mm

100 mm

Two sample thicknesses: 4.5 mm and 29 mm

Two sample holder materials: Aluminum and Ceramic

Two heat fluxes: 30 kW/m 2 and 80 kW/m2

Temperature and mass loss recorded



26 1 Experiments

Thermocouples 1 1  Scale r"
01 IS

-  100 mm
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10n mm

100 mm

29 mm

Two sample thicknesses: 4.5 mm and 29 mm

Two sample holder materials: Aluminum and Ceramic

Heat flux: 30 kW/m2

Temperature and mass loss recorded



27 1 "Thin" Sample

Scale

100 mm

Sample thicknesses: 4.5 mm

Two sample holder materials: Aluminum and Ceramic

Heat flux: 30 kW/m2

Mass loss recorded

Flaming Ignition: Yes



28 I 4.5 mm "Thin" Sample — 30 kW/m2
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291 4.5 mm "Thin" Sample — 30 kW/m2
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