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https://compoundsemiconductor.net/article/102949/UMS_GaN_HEMT_process_qualified_for_space
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« Reliability predictions often use (in Si and GaAs technology)
the constant temperature Accelerated Life Testing (Arrhenius
Relationship)

* |nadequate for GaN HEMT technology failure mechanisms
and/or failure modes

* Multiple failure mechanism makes GaN HEMT qualification
challenging

« Seeking refined qualification protocol in areas including

Space radiation

¢ Radiation environment
- Intrinsic Reliability

t p S
(energetic and low-energy plasma,
Oxygen atoms, debris) here neglected
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« High Electron Mobility Transistors (HEMT) were first created
with GaAs

« AlGaN/GaN HEMT failure mechanisms are located in nearly
the same location and each type of failure mechanism has

AlGaN/GaN HEMT

different effect on device performance
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Some Failure Mechanisms in GaN Power HEMTs

=

Gate s SizN, passivation
/

s

Drain ] aiGaN

~ 2DEG™*

Reliability Concerns:
Gate diffusion, chemical reactions
Saurce/drain ohmic metal-semiconductor reactions
Pits/cracks — moisture / mechanical stress (IPE**)
Charging/traps- virtual gate (VG)
Dislocation defects (throughout)
Point defects (esp. at gate-drain edge)

*Source Connected Field Plate
*Inverse Piezoelectric Effect
***Two Dimensional Electron Gas

Slide 4 from The Aerospace Corporation presentati ion “Space Qualification of GaN HEMTs — Guidance Document Announcement” at the 20 June 2018 NASA NEPP meeting by John
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* |Inverse piezoelectric effect — changing the electric field at the
interface which allows inversion due to the HEMT structure

* Hot carrier — particularly hot electrons which are caused
when high electric fields create high energy electrons that
can cause damage near the interface

* New trap generation -
« Contact degradation
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* GaN technology has performed well in radiation
environments [2]

* Recent interest has coupled radiation with different
performance states (on, off, semi-on) producing differing

degradation [3]

 Additional coupling of radiation effects with long term
reliability analysis has also been explored [4]
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« Goal: Determine if location vulnerable to stress testing is also vulnerable
to heavy-ion irradiation; how does the vulnerability differ with different bias
conditions?

« Sandia lon Beam Laboratory
« HVE 6 MV Tandem
* MicroOne — microbeam with a spot size of ~1 micron
* 1.7 MeV Germanium ion
« Targeted between gate and drain at different bias conditions while

under irradiation to determine if location was susceptible to
irradiation and if bias affects device performance

Experimental Setup at Sandia lon Beam Laboratory
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Experimental Details

Pre — Irradiation Measurement
AlGaN/GaN HEMT held at a constant
stress (off, on, or semi-on) while
targeted 1.7MeV Ge ions at the drain
side of the gate edge

Insitu measurement of the
stress/irradiation shows how the gate
and drain current changes as irradiation
and stress time increases

Insitu measurement of control part was
stressed in off, on and semi-on state
without radiation
Post-Irradiation Measurements

Device
Vth =-3.1V
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Field plate

Gate

1.7MeV Ge

SEMI ON
Drain =5V
Gate = -2V

OFF ON
Drain =5V Drain =5V
Gate = -5V Gate=1V
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Results — Stress only (

No irradiation)
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 Depending on where irradiation stopped, damage was either recoverable
or permanent (Pink shows 30 day room temperature anneal)
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« Semi-on state post measurements created too much stress for devices. 2
of 4 devices reached compliance during output measurement after
completing a series of transfer characteristic measurements
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\7 Part Burned Out ZAFIT

* On state device 2655-0013 burned out during post output measurements
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« Damage of 5x10* Ge ions across 50 microns causes damage
to on-state and semi-on state parts (fluence 1x10"" cm-)

 All stress states (on, off, and semi-on) cause similar
characteristic changes when the gate-drain gap is targeted
with 1.7MeV Ge ions

» Decreased transconductance

« (Gate diode characteristics affected at higher drain voltage (requires less
voltage to exhibit diode behavior)

* Decreased drain current
* No threshold voltage shift, No change to Ron
* When high voltage post-measurement sweeps are
accomplished after semi-on state irradiation; the parts can act
abnormal (hit compliance).

« This damage may be recoverable

* When high voltage post-measurement sweeps are

accomplished after on state irradiation; the parts can blow up
WWW.AFIT.EDU Distribution A 18
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« Devices are smaller and faster aided by using wide-bandgap materials
(GaN, Ga,0; etc) reducing weight and volume

« Gallium Nitride High Electron Mobility Transistors (HEMTs) are designed
to allow increased voltage and current to pass through the device

» Greater efficiency than silicon in higher power output, speed, frequencies and
temperature environments

« Harder radiation tolerance due to wider bandgap
« GaN HEMT technology used in a variety of applications including
« High speed switches, RF power in the GHz range
Communication
Satellite Radar—L, S, C, Xand KU band ¢ ==

:. LLLLLL )
b = ODﬁCﬂLﬁﬁ'},}g'“m“j“caﬁ"" network Wireless
* Power Amplifiers e ——
~F }»‘f 15\: ,,),

Specific space-based versions of above

Base Station

https://global-sei.com/technology/tr/bn86/pdf/86-13.pdf
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