

Risk Assessment in the Clinical Microbiology Laboratory

Montana ASCLS Spring Meeting
April 6, 2019

Paula Austin
Sandia National Laboratories

SAND No.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA000352

Biorisk Assessment

- **According to the BMBL, 5th ed.**
 - “There is no standard approach for conducting a biological risk assessment, but some structure can be helpful in guiding the process.” (Biosafety in Microbiological and Biomedical Laboratories, 5th ed., HHS Publication No. (CDC) 21-1112)
- **Risk assessments drive risk identification, prioritization, and mitigation measure determination**
 - Biosafety
 - Biosecurity

Overview

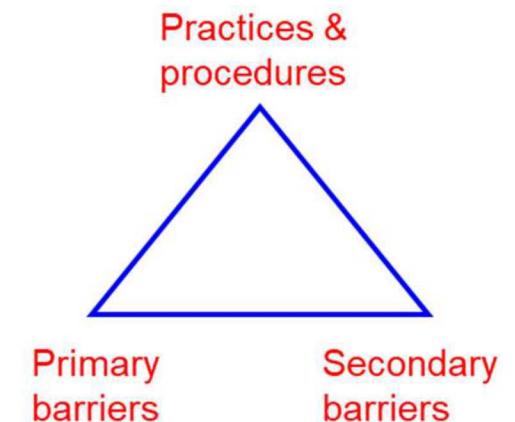
- **Define Risk**
- **Define Biosafety and Biosecurity, and components of each**
- **Discuss a structured process to conduct risk assessments**
 - Biosafety
 - Biosecurity
- **Risk Mitigation**
- **Risk Assessment Case Studies**
 - Ebola
 - Prions
 - Unknown Samples

Definitions

- **Biosafety**
 - Combination of equipment, practices and procedures, and PPE to minimize the likelihood of accidental exposure to biological material
 - **Protection of workers**
- **Biosecurity**
 - Combination of equipment and practices and procedures to minimize the likelihood of deliberate theft, diversion, exploitation of biological material, equipment, and expertise
 - **Protection of biological material**
 - **Protection of expertise**
 - **Protection of equipment**
 - **Protection of information**

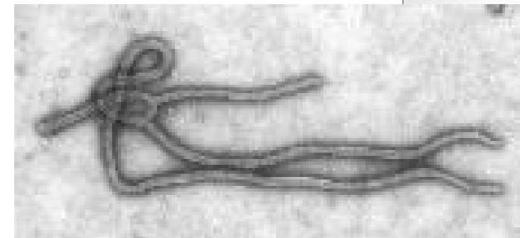
Risk

- **Function of the likelihood an adverse event will occur and the consequences of the adverse event**
 - Risk = Likelihood * Consequences
 - Accidental exposures
 - Theft of biological material
- **Work with pathogens will always involve some level of biosafety and biosecurity risk**
 - Distinguish between “acceptable” and “unacceptable” risks
 - Risks must be prioritized
 - Cannot protect against every conceivable adverse event
- **Resources for risk mitigation are not infinite**
 - Risk mitigation is determined by risk assessment
 - Existing resources should be used efficiently



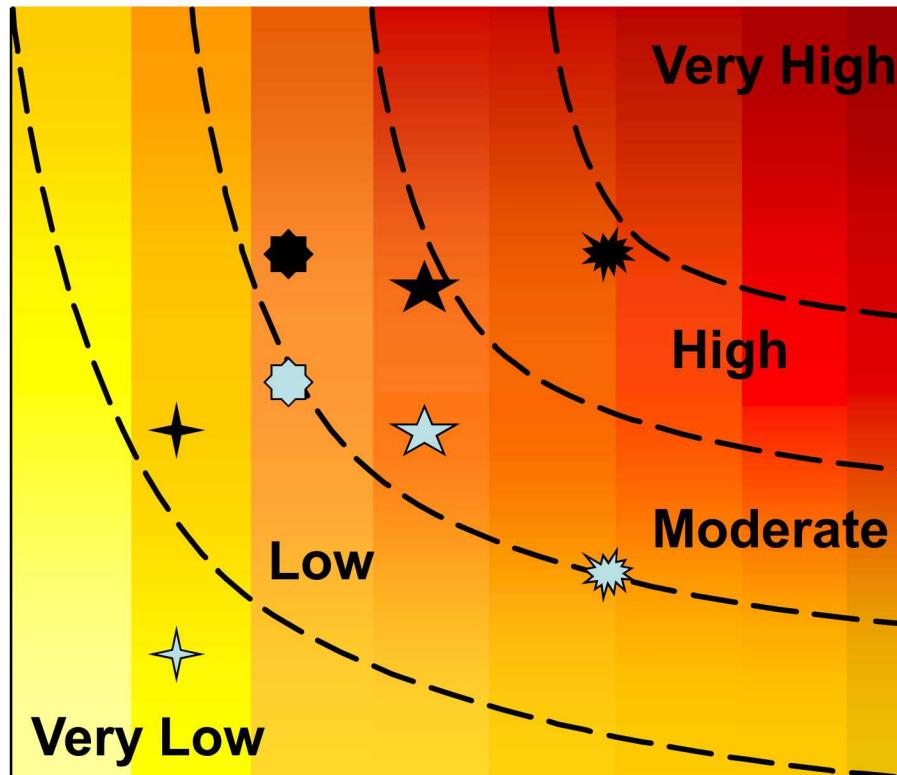
BIOSAFETY

Biosafety Risk Assessment


- 1. Characterize biological agents and activities**
 - a. Evaluate biological agent characteristics and hazards
 - b. Evaluate hazards of activities and procedures
- 2. Evaluate scenarios**
 - a. Create scenarios consisting of the specific agent and specific procedures
 - b. Determine the likelihood of exposure based upon the procedure and the likelihood of infection based upon the agent as related to the method of exposure
- 3. Characterize the risk**
 - a. Evaluate the overall likelihood and consequences of each scenario
 - b. Determine acceptable and unacceptable risks
 - c. Prioritize
- 4. Determine appropriate measures to mitigate the risks**
 - a. Primary barriers, and secondary barriers
 - b. Practices & procedures
 - c. PPE

Biological Agent Characteristics

- **Effects and severity may vary**
 - Lethal
 - Incapacitating
- **ID₅₀: Number of organisms necessary to cause infection**
- **LD₅₀: Amount of agent necessary to kill 50% of animals tested**
- **Environmental stability**
- **Transmissibility**
- **Antibiotic resistance**
- **Route of entry**
 - Potentially result in different disease
- **Infectious (low ID₅₀)**
- **Treatment availability**
- **Prophylaxis availability**
- **Endemic or exotic**
- **Host range**



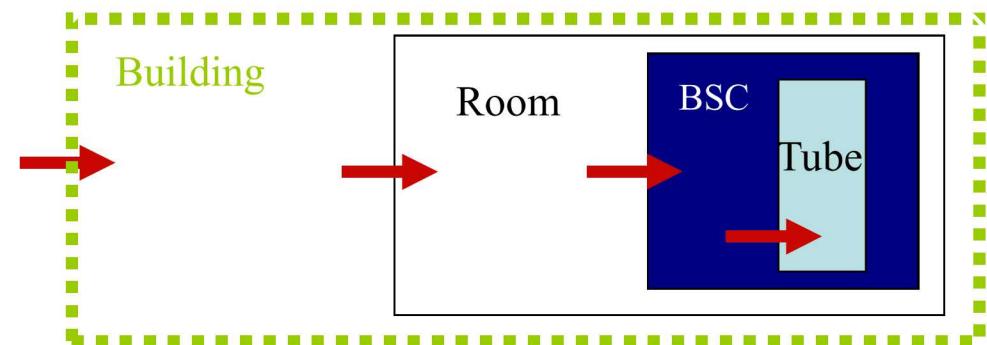
Activities and Scenarios

- Identify scenarios for how exposures could occur
- Sample receipt
 - Opening samples received by shipment
 - Sample collection procedures, such as blood or CSF
- Sample manipulation
 - Culture
 - Slide preparation
 - Use of microtome for tissue preparation
 - PCR
- Biocontainment is the appropriate balance of practices & procedures, primary barriers and secondary barriers, and PPE necessary to mitigate risks

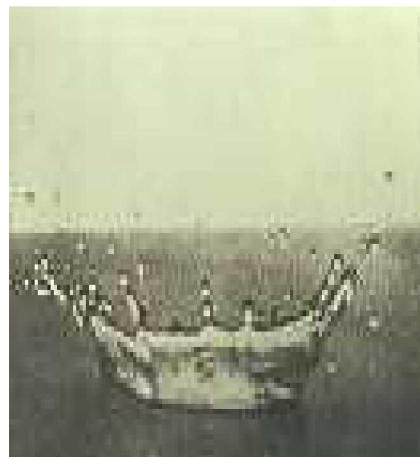
Characterize the Risk

- Protect against unacceptable risk scenarios

- Develop mitigation measures and incident response plans for acceptable risk scenarios

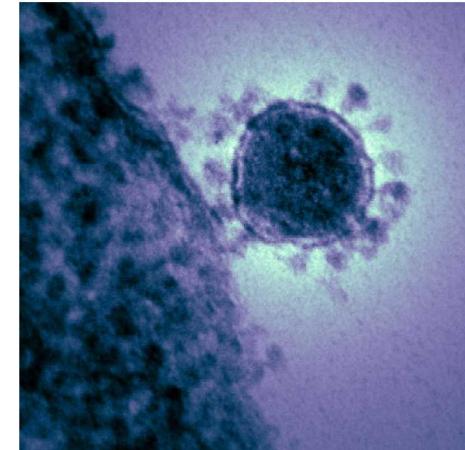

Biosafety Mitigation

Biosafety: Engineering Controls


- **Primary barriers – contain the agent at the source**
 - Biological safety cabinet
 - Specialized lab equipment (centrifuges)
- **Secondary barriers – contain the agent within the room or facility *in case an agent escapes from the primary barriers***
 - Building & Room Construction
 - HVAC
 - Directional airflow
 - Exhaust filtration
 - Other Engineering Controls:
 - Solid waste treatment
 - Wastewater treatment

Biosafety: Standard and Special Procedures

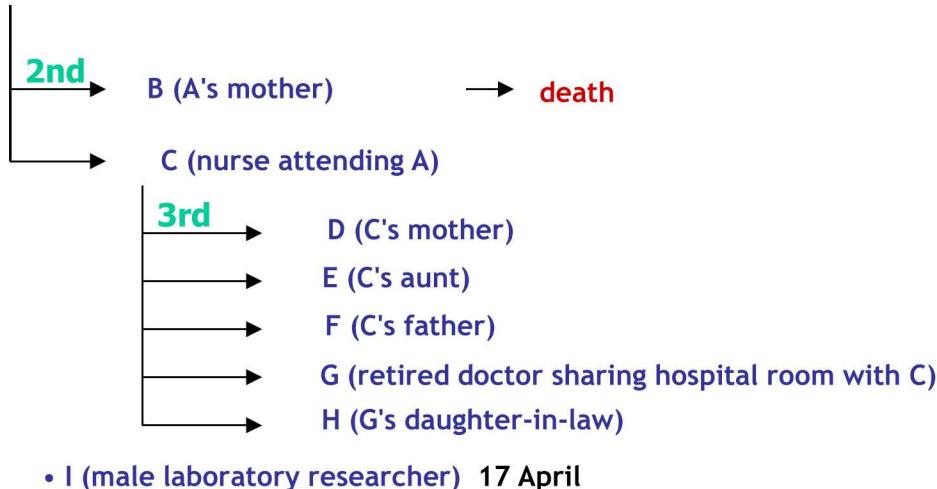
- **Appropriate covering on work surface assists clean-up**
- **Appropriate disinfectant**
 - Chemical
 - Concentration
 - Contact time
- **Handwashing**
- **Procedures that minimize aerosol generation**


Biosafety: PPE Examples

Severe Acute Respiratory Syndrome (SARS)

- In 2003, SARS infected over 8,000 people and killed approximately 800
- Cases in Pacific Rim and Canada
- Laboratory acquired SARS outbreaks
 - Singapore—September 2003
 - Taiwan (China)—December 2003
 - Beijing and Anhui (China)—March 2004

Laboratory-Acquired SARS Outbreak in China, March-April 2004


- Occurred in Beijing and Anhui Province, linked to the National Institute of Virology, China CDC
- The source of the outbreak was failed or incomplete inactivation of SARS-CoV (cold inactivation)
- Involved two verified chains of SARS-CoV transmission
 - Three generations, resulting in 9 cases
- Serological analysis on the laboratory staff revealed three more seroconverted cases

Laboratory-Acquired SARS Outbreak in China, March-April 2004

• A (female research student) 25 March

SARS IgG (+) J (female laboratory worker in BSL-3 laboratory)
K (female laboratory worker developed pneumonia)
L (male laboratory worker, A's supervisor)

China CDC

Common Problems

- Bad practice in laboratory management
- Poor supervision of less experienced professionals
- A lack of accountability for occupational health and safety
- A lack of biosafety policy
- A lack of biosafety procedures and staff training in biosafety practice
- A lack of internal and external quality assurance

Summary of Biosafety Level Requirements

Table 3. *Summary of biosafety level requirements*

	BIOSAFETY LEVEL			
	1	2	3	4
Isolation ^a of laboratory	No	No	Yes	Yes
Room sealable for decontamination	No	No	Yes	Yes
Ventilation:				
— inward airflow	No	Desirable	Yes	Yes
— controlled ventilating system	No	Desirable	Yes	Yes
— HEPA-filtered air exhaust	No	No	Yes/No ^b	Yes
Double-door entry	No	No	Yes	Yes
Airlock	No	No	No	Yes
Airlock with shower	No	No	No	Yes
Anteroom	No	No	Yes	—
Anteroom with shower	No	No	Yes/No ^c	No
Effluent treatment	No	No	Yes/No ^c	Yes
Autoclave:				
— on site	No	Desirable	Yes	Yes
— in laboratory room	No	No	Desirable	Yes
— double-ended	No	No	Desirable	Yes
Biological safety cabinets	No	Desirable	Yes	Yes
Personnel safety monitoring capability ^d	No	No	Desirable	Yes

^a Environmental and functional isolation from general traffic.

^b Dependent on location of exhaust (see Chapter 4).

^c Dependent on agent(s) used in the laboratory.

^d For example, window, closed-circuit television, two-way communication.

From: WHO LBM 3rd edition
18

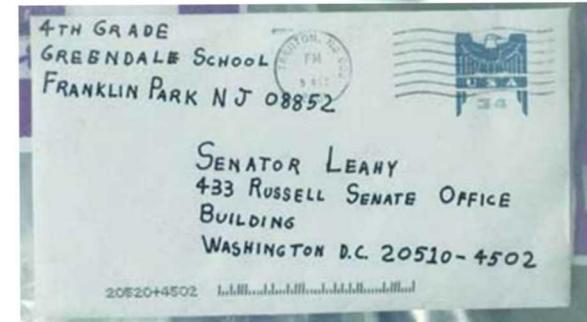
 International
BIOMEDICAL THREAT REDUCTION

BIOSECURITY

Laboratory Biosecurity Risks

- **Likelihood**
 - Of an adversary targeting and successfully acquiring a specific biological agent from the laboratory
- **Consequences**
 - Of disease from malicious release of the specific biological agent
- **Risks**
 - Deliberate release of biological material resulting in
 - **Exposure to the human community**
 - **Exposure to the animal community**
- **This method can be used to assess and help protect against other security risks (E.g. theft of equipment or sabotage)**

Biocrime Example: Diane Thompson, October 1996


- **Location:** Hospital in Dallas, TX
- **Perpetrator:** Diane Thompson
 - Clinical laboratory technician
- **Objective:** Possibly revenge against former boyfriend and cover-up by infecting co-workers
- **Organism:** *Shigella dysenteriae* Type 2
 - Acquired from clinical laboratory
- **Dissemination**
 - Contaminated pastries in the office break room
 - Infected 12 of her coworkers
- **Outcome**
 - Arrested, convicted, 20 year sentence

Bioterrorism Example: Anthrax, October 2001

- **Location:**
 - Numerous sites in the US
- **Perpetrator:**
 - Bruce Ivins accused
- **Objective:**
 - Unknown
- **Organism:**
 - *Bacillus anthracis*
- **Dissemination**
 - 7 letters sent through postal system
 - 22 confirmed cases of anthrax
 - 11 Cutaneous
 - 11 Inhalational (5 Deaths)
- **Outcome:**
 - FBI unveils evidence against Ivins who died prior to indictment

Biosecurity Risk Assessment

1. Characterize biological agents and threats

- a. Evaluate pathogens and toxins at a facility (asset assessment)
- b. Evaluate adversaries who might attempt to steal those pathogens or toxins (threat assessment)

2. Evaluate scenarios

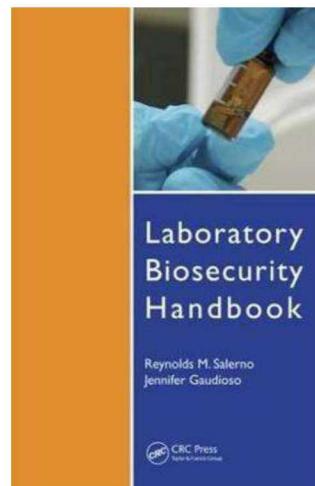
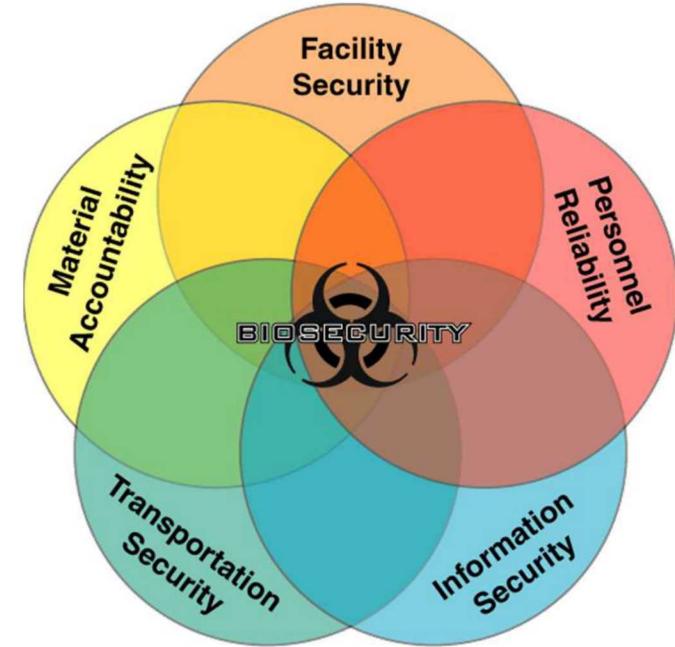
- a. Create scenarios consisting of “specific adversaries” attempting to steal and misuse a specific biological agent
- b. Determine how the various scenarios could be perpetrated (vulnerability assessment)

3. Characterize the risk

- a. Evaluate likelihood and consequences of each scenario
- b. Determine acceptable and unacceptable risks

Asset Characterization

- **Determining the ease or difficulty of malicious use (likelihood) should involve assessing the following:**
 - Difficulty of acquiring the agent
 - Difficulty of processing the agent into a suitable quantity in a suitable form
 - Difficulty of disseminating the agent to cause harm
- **Determining the potential consequences of the malicious use of a particular agent or toxin should involve assessing the following:**
 - Physical impact of an attack on a population
 - Impact of an attack on the economy
 - Impact of changes in public perception
 - Impact on facility operations



Scenarios

- **Scenarios are used to help detect vulnerabilities in the biosecurity management program**
- **Consider**
 - Assets
 - Facility
 - Adversary type
 - The method the adversary could use to:
 - **Attempt to steal or divert the biological agent**
 - **Subsequently misuse the agent or toxin**

Biosecurity Systems – A Comprehensive Approach

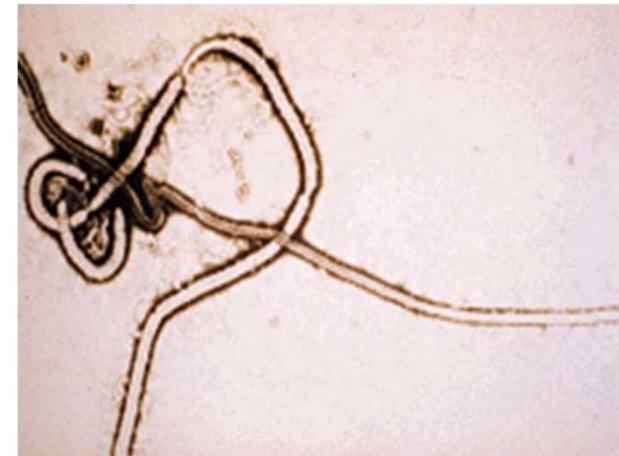
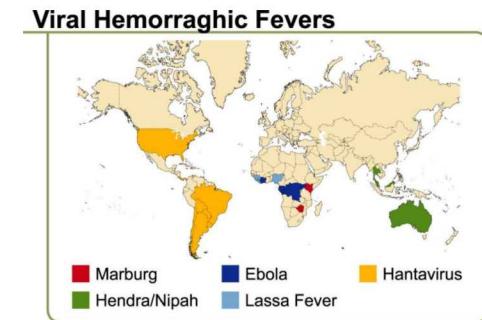
- **Biosecurity system components**
 - Physical security
 - Personnel security
 - Material handling and control measures
 - Transport security
 - Information security
 - Program management practices
- **Each component implemented based on results of risk assessment**

Indicators

- **Nefarious activity may be difficult to detect**
 - Evidence of equipment use outside of routine activity
 - Evidence of suspicious activities such as media consumption exceeding routine activity
- **Suspicious behaviors**
 - Outsider threat
 - Unusual deliveries
 - Attempts to penetrate the laboratory
 - Hanging around the laboratory
 - Increased interest in laboratory or location where biological materials are stored
 - Insider threat
 - Change in behavior
 - Susceptibilities to coercion
 - Efforts to get access to areas not required for job

Disease Patterns as Indicators

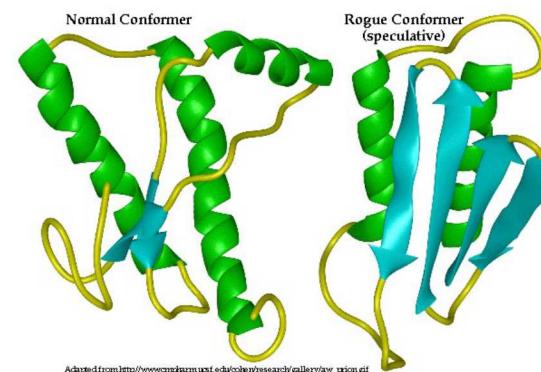
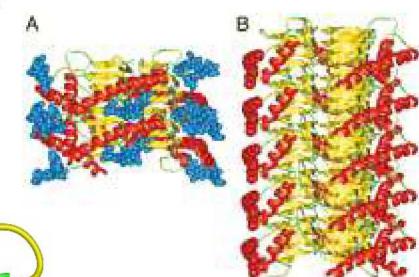
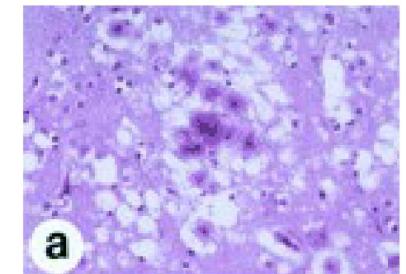
- Increase in patients with similar symptoms and disease in the same stage
- High mortality rate among victims having common home, work, or activity locations
- Concurrent human and animal illness with same causative agent
- Abnormal disease distribution
 - New geographic location
 - Unusual time of year
- Diagnosis of a disease with potential or historical bioterrorism usage

CASE STUDIES

Ebola Virus Risk Assessment

- Zoonotic
- Host Range
 - Humans and nonhuman primates
- Relatively unstable (enveloped viruses)
- ID₅₀: 1 – 10 virions
- Mortality varies
 - 50 – 90%
- Generally only supportive treatment
 - New Ebola vaccine
- BSL4 organism
 - Exotic

Prions Bovine Spongiform Encephalopathy

- Transmissible spongiform encephalopathy
 - Mad cow disease
 - Variant Creutzfeldt Jakob disease (vCJD)
- Incubation period: Years
- Extremely stable
- ID₅₀: Unknown but thought to be one prion protein
- Unilaterally fatal
- No treatment

Unknown Samples

- **What do you know about the sample?**
- **What do you know about the patient?**
- **What other information can help you determine risks associated with the sample?**
- **What are considerations for biosecurity?**
 - Is this disease-causing agent unique?
 - Is it possible that the disease results from a deliberate release?

A photograph of a sunset or sunrise. The sun is a bright, glowing orb positioned in the lower center, partially obscured by the dark silhouettes of tree branches and leaves. The sky is a warm, golden-yellow color, transitioning to a darker orange and then to a pale blue at the top. A single bird is captured in flight, its dark silhouette a small point of interest in the upper left quadrant of the frame.

Thank you!