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Sandia Grid Modernization Timeline
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4 Energy-Related Research Platform
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Distributed Energy Technologies Laboratory (DETL) Energy
Storage Test Pad (ESTP)

• Flexible, reconfigurable, high-density, p/c-HIL

• Specializes on DER systems integration: inverters, energy
storage, gensets, microgrids, controllers

• Efficiency, reliability, safety, interoperability, cyber-
security, standards conformance
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6 Sandia University Partnership Strategy

+Provide national leadership in science and engineering by establishing
enduring partnerships with a focused set of universities.

Engage and develop talent

EADERSH P

Research

Conduct collaborative,
mission-driven R&D

Develop joint IP and deploy
new technologies



7 Motivation for Cyber-securing PV and DER

Large-scale deployment of renewable energy is limited by
power system constraints

These issues can be mitigated using inverter grid-
support functions

° Interconnection standards (e.g., HI Rule 14H) have
been updated to standardize these functions

❖ The new national interconnection standard, IEEE Std.
1547-2018, also requires DER interoperability
(communications)

° Previously many DER devices communicated through
proprietary protocols back to monitoring services
("security through obscurity"?)

Now common protocols (IEEE 2030.5, IEEE 1815,
SunSpec Modbus) will be used by all DER devices

This is increasing the power system attack surface

Grid-Support Functions 
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8 I Roadmap for PV Cyber Security

+Roadmap
• Outlines 5-year strategy for DOE, industry, and standards

development organizations in areas of Identify/Protect, Detect, and
Respond/Recover

• Focused on PV, but highly extensible to other DER

• Closely aligned with 2011 "Roadmap to Achieve Energy Delivery
Systems Cybersecurity"

• Explores existing research by DOE, other agencies, and industry

+Major recommendations
• Engage in cross-industry communication and collaborations

(e.g., information sharing programs)

• Develop standards, guidelines, and best practices (leveraging existing
work)

• Foster R&D programs to develop solutions for protecting
infrastructure, detecting threats, and recovering from attacks

• Work to harden infrastructure, conduct self-evaluations, and practice
good cyber hygiene to stay ahead of adversaries

SANDIA REPORT
SAND2017-13262
Unhmited Release
Pnnted December 2017

Roadmap for Photovoltaic Cyber
Security

Jay Johnson

Prepareo by
Sand a Nabonal Laboratores
ALbucaterotte, New 1.1.00 87185 and Lfeennom 04550

Sand a Natmnal Laboratowes y a multHrnawon laboratory managed and operateo by Natrona] Technology arm Engmeer ng
Soloborts of Sanwa. LLC . a awotly owned substatary of Honeywell intern abonal. lnc . for the U S Deparonent e Enefgy's
Hatton* Nuclear Secanty Abnunwrabon under contract DE.NA-0003525

Approved for poblto release forthef d.ssefnmatton unlynoes

More details in "Roadmap for Photovoltaic Cyber Security" (SAND2017-13262), which outlines a 5-year strategy for DOE, industry, and standards development organizations in areas of Identify/Protect, Detect, and Respond/Recover.



9 Roadmap Work Flow

❖ Vision: By 2023, grid operators, system
owners, and aggregators communicate with
interoperable photovoltaic systems using
safe, secure, resilient networks with high
availability, data integrity, and confidentiality.

+ Focused on four areas
• Stakeholder Engagement

• Research and Development

• Industry (grid operators,
aggregators, and PV vendors)

• Standards and Guidelines

+ Major goals:
• Inform solar industry of DER cybersecurity

concepts

• Form industry working groups

o Create cybersecurity standards

• Commercialize security R&D

Cyber Security for Industrial Control Systems

Cyber Security for Energy Systems

Cyber Security for DER

Cyber Security for Distributed PV

Stakeholder Engagement

Information
Sharing

Working Groups Standards Standards
Input Standardized Input

Cyber Security Industry Cyber Security
Exercises Education Requirements

for PV/DER
Incident Contingency

Response Tearns Planning

IParticipation in

Workshops and
Working Groups

Adoption of

Standards

IStandards Adoption

Cyber Security R&D

Deep packet
inspection

Network
Segmentation

Machine learning and

advanced analytics

PV and Cyber Security Industry

Self-Evaluations Defense-in-Depth Auditing

Moving target
defense

Cyber physical
co-simulation

Intrusion detection

I
o
Commercialization
f R&D concepts

Insider Threat
Mitigation

Supply Chain Risk

Management

More details in "Roadmap for Photovoltaic Cyber Security" (SAND2017-13262), which outlines a 5-year strategy for DOE, industry, and standards development organizations in areas of Identify/Protect, Detect, and Respond/Recover.



SunSpec/Sandia DER Cybersecurity Workgroup

• Started August 2017

• Over 300 participants from more than 50 organizations

• Charter: DER Cyber Security Working Group brings together DER
interoperability and cyber security experts to discuss security
for DER devices, gateways, aggregators, utilities and the US
power system.

• Primary Goal: generate a collection of best practices that act
as basis for (or input to) national or international DER cyber
security standards.

• Secondary Goal: facilitate DER cyber security discussions
between stakeholders to exchange perspectives and gain broad
buy-in from the industry.

I

Cyber 

I
Threat

I

I

I



DER Cybersecurity Workgroup Structure

1—

SUIISPEC
*- ALLIANCE -.

SunSpec/Sandia DER Cybersecurity Workgroup
/

( DER Devices a Servers Active(Secure Network Architecture Active
• Define standardized procedure for DER and server vulnerability •

assessments. •
• Leads: Danish Saleem (NREL) and Cedric Carter (MITRE) •
• Cases advised from known equipment vulnerabilities •
• Transferring to UL STP (likely new UL Std. 2900-2-4)

Data-in-Flight Requirements Just Started
• Define common set of encryption, authentication, and key management

requirements for DER communications.
• Leads: Nicholas Manka (GridSME) and lfeoma Onunkwo (Sandia)
• Update protocol and interconnection std. requirements

K
\

Patching Requirements Later
• Establish patching guidelines for DER equipment.
• Starting Oct 2019. Lead: TBD
• Requirements for patching (e.g., update rates, expected mitigation

timelines)
• Maintenance guidelines }

Create DER control network topology requirements and interface rules.
Lead: Candace Suh-Lee (EPRI)
Perimeter controls
Segmentation requirements

/

Access Controls Later
• Classify data types, associated ownership, and permissions. Define set of

protection mechanisms.
• Starting Oct 2019. Lead: TBD
• Access control list taxonomy, principle of least privilege
• Password control and data privacy expectations
\ /

r
Utility/Aggregator Auditing Procedure Much Later
• Create recommended auditing practices for DER networks.
• Planned for Oct 2020. Lead: TBD
• Step-by-step auditing procedure for internal or external compliance review.

Recommend data for forensics.

 )
Sign up at http://sunspec.org/sunspec-cybersecurity-workgroup/



DER Communication Protocols

• Many paths between utilities and DER

• Multiple DER communication protocol options

— Physical media could be serial, PLC, Internet, cell, AMI, etc.

— Transport will mostly be TCP/IP between utility and DER site,
home, facility

— Application layer defined by IEEE 2030.5, IEEE 1815, Modbus

— Information models: IEC 61850-90-7, SunSpec, CSIP, DNP3
App Note.

• DER communication protocol basics and standards
are covered in:

— C. Lai, N. Jacobs, S. Hossain-McKenzie, C. Carter, P. Cordeiro,
I. Onunkwo, J. Johnson, "Cyber Security Primer for DER
Vendors, Aggregators, and Grid Operators," Sandia Technical
Report, SAND2017-13113, Dec 2017.

• Data-in-flight encryption and trust recommendations
for IEEE 2030.5 are described in:

— J. Obert, P. Cordeiro, J. Johnson, G. Lum, T. Tansy, M. Pala, R.
lh, "Recommendations for Trust and Encryption in DER
lnteroperability Standards," Sandia Technical Report,
SAND2019-1490, Feb 2019.

Utility, Distribution System Operator (DSO), or other Grid Operator
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Information Model:

IEEE 1547-2018 representation in

CSIP, DNP3 App Note 2018

Application Protocol: IEEE 2030.5,

IEEE 1815, others.

Transport Protocol: TCP/IP

Communications Media:

• Utility private WAN

• Cellphone GPRS

• Public Internet

• AMI network

• Telecomm provider 

- Information Model:

Proprietary, IEEE 1547-2018

representation in CSIP, DNP3 App

Note 2018 SunS ec Modbus
Application Protocol: IEEE 2030.5,

IEEE 1815, GOOSE, others.

Transport Protocol: TCP/IP

Communications Media:

• Public Internet

• AMI network

• Telecomm provider

Information Model:▪ Likely SunSpec
Modbus, maybe others 

Application Protocol: Modbus, PLC

Transport Protocol: TCP/IP, serial,

PLC

Communications Media:

• Wired or wireless (802.11) LAN

• Zigbee

• Serial (RS-485/RS-232)

• Power Line Carrier



13 I DER Cybersecurity R&D

•:. Example: "Secure, Scalable
Control and Communications
for Distributed IN" project
investigating cybersecurity
implications of
communications-enabled
DER control.

o Goal: Find optimal network
architecture by quantifying
tradeoffs between cybersecurity
and communication
latency/power system
performance

o Project also studied the impact
to the power system under
different cyber attack scenarios
to quantify risk and quantify
defensive strategies.

Considered

Identify and Protect

Abandoned Prevented

Launched Bypassed

• Threat Models • Cryptography
• Risk Quantification • Virtualized Testbed
• Cyber Assessments Environments
• Network Segmentation • Engineering Controls
• Dynamic Networking and • Physical Security

Moving Target Defense • Security for Cloud-Services
•• Trusted and Protected • Obfuscation and Deception

Computing • Authentication •

Detect Respond and Recover

Detected

Undetected

Adapted to

Completed

• Resilient Designs
• Dynamic Assessment
• Contingency Operating Modes
• Restoration
• Investigations and Attribution

Situational Awareness
Intrusion Detection

More details in "Roadmap for Photovoltaic Cyber Security" (SAND2017-13262), which outlines a 5-year strategy for DOE, industry, and standards development organizations in areas of Identify/Protect, Detect, and Respond/Recover.



14 I DER Network Quality of Service vs Grid Performance

+ Project investigated how network
topology/security features change communication
speed and power system behavior

+ Multiple communications-enabled DER control
approaches were simulated:

Synthetic inertia

Communication enabled fast acting imbalance
reserve

Communication enabled frequency droop

Hierarchical control of volt-var (VV) function

+ Power system metrics determined for each control
case varying DER availability and communication
latency.
o Transmission services impacted with latencies between

0.1 and 10 seconds, depending on the gains

Distribution services not impacted for latency below
20 seconds
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1. J. E. Quiroz, M. J. Reno, O. Lavrova, R. H. Byrne, "Communication requirements for hierarchical control of volt-VAr function for steady-state voltage," IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, 2017.
2. M. Reno, J. Quiroz, O. Lavrova, and R. Byrne, "Evaluation of Comniunication Requirements for Voltage Regulation Control with Advanced Inverters," IEEE North American Power Symposium, Denver, CO, September 2016.
3. R. Concepcion, F. Wilches-Bernal, R. Byrne, "Effects of Communication Latency and Availability on Synthetic Inertia," IEEE ISGT 2017, Arlington, VA, April 23-26, 2017.
4. F. Wilches-Bernal, R. Concepcion, J. Neely, R. Byme, and A. Ellis, "Communication Enabled Fast Acting Imbalance Reserve (CE-FAIR)," IEEE Transactions on Power Systems.



15 I ...but what if the DER equipment were maliciously controlled?

+ Team investigated advanced control functions developed in this project and then extrapolated them to
standard control functions defined in IEEE 1547-2018, IEC 61850-90-7, CA Rule 21, etc.

+ Volt-var, power factor, and constant reactive power examples:

1.12

0.5

o_o 0

cc

-0.5
0.94 0.97 1

Voltage (pu)

1.03 1.06

—Unity PF  Default VV ----Inverted VV — — Constant Var

Attack: volt-var function is inverted
to inject reactive power at high
voltage and absorb reactive power at
low voltage. PF and VV13 attacks
lead to constant reactive power
injection.

1.1

3 1.08

CO 1.04

1.02
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— Inverted VV

- - - Constant VAr

0 0.5 1 1.5 2 2.5 3 3.5

Distance from Substation (km)

'5o
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Result: distribution feeder
experiences substantially
higher voltages (above the
ANSI range B limits), tripping
the DER on HVRT, and possibly
leading to localized outages if
enough generation trips.
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- Controlled W

- Attacked

Day 7



16 Transmission Cases

Frequency Droop

fref feq 
AP- = = kR (fref feq)

Apattack = fref feq 
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17 I Extrapolating to additional DER grid-support functions

Based on power system studies, estimated aggregated control risk from DER

grid-support functions.
Low risk: limited power system impact

Medium risk: regional voltage effects or localized loss of load (brownouts)
High risk: bulks system power outages

Grid-support function
Frequency Ride-Through (FRT) Trip Settings

Risk
High

Cause
Tight FRT trip settings cause DER power loss with minor frequency deviations

Voltage Ride-Through (VRT) Trip Settings High Tight VRT trip settings cause DER power loss from minor voltage deviations
Normal Ramp Rate (RR) Low Fast RR requires faster regulation but minimal power system impact
Soft-Start Ramp Rate (SS) Low Fast SS requires faster down-regulation but minimal power system impact
Frequency-Watt (FW) High Improperly programmed FW curves cause DER power loss, possibly resulting in a blackout
Voltage-Watt (VW) High Improperly programmed VW curves cause DER power loss, possibly resulting in a blackout
Connect or Disconnect (INV1) High Aggregate DER power loss could cause blackout
Limit Max Real Power (INV2) High Aggregate DER power loss could cause blackout
Power Factor (INV3) Medium Extreme voltage conditions, DER will trip on VRT trip settings, possibly leading to outages*
Volt-Var mode (W) Medium Extreme voltage conditions, DER will trip on VRT trip settings, possibly leading to outages*
Watt-Power Factor (WP) Medium Extreme voltage conditions, DER will trip on VRT trip settings, possibly leading to outages*
Fixed Reactive Power Medium Extreme voltage conditions, DER will trip on VRT trip settings, possibly leading to outages*

* These scenarios are difficult to predict. DER will trip on overvoltage, thereby mitigating some of the voltage issues. Current-based protection systems will not isolate portions of the
feeder. However, if enough distributed generation is tripped in high penetration environments (e.g., HI), bulk system impacts could occur.

J. Johnson, J. Quiroz, R. Concepcion, F. Wilches Bernal, M. Reno, "Power System Effects and Mitigation Recommendations for DER Cyber Attacks," IET Cyber-Physical Systems: Theory Et Applications, Jan
2019, DOI: 10.1049/iet-cps.2018.5014.



18 I Creating solutions: a snapshot of some activities

Engineering Controls 

Concept: Create rules for information
models/communication protocols or
DER to reject grid-support parameters
that are known to cause system
instability or other grid problems.

-60

Volt-Var Function Param r nges

Acceptable
VV points

90

Disallowed
VV points

(V2, Q2)

95

Grid I i I)

Disallowed
W points

Acceptable
VV points

110

On-going work: Sandia is investigating
updating pysunspec (Python driver for
SunSpec Modbus) to add specific rules
to filter out malicious or erroneous
commands that could negatively
impact the power system.

❖ Data-in-flight Security

Concept: For DER traffic transmitted
on the public internet, overlay TLS
security on top of SunSpec Modbus or
create a RESTfuI web services option
for IEEE 1547, CA Rule 21, and other
information model requirements.
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On-going work: Sandia, EPRI and
SunSpec are building communication
stacks and investigating security
features in IEEE 2030.5, IEEE 1815,
SunSpec Modbus + TLS, and SunSpec-
Compliant Web Services with TLS.

Enclaved DER Topologies 

Concept: Create DER enclaves with
firewall rules, VPNs, or proxies so an
adversary cannot control all DER
devices if an enclave is compromised.

On-going work: DER Cyber Security
Working group is creating recommended
data architectures for utilities and DER
aggregators. Also, Sandia measuring
cyber metrics of different topologies
with red teaming activities.



19 I Tying cybersecurity design to grid performance

DER control network architectures
are emulated in the SCEPTRE
environment.
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Multiple DER network architectures will be simulated to determine:
1. Cybersecurity resilience
2. Communication latency, dropout, and availability
3. Power system performance metrics (voltage, nadir, etc.)
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I Cybersecurity Features Implemented in SCEPTRE

1. Segmentation

Z..1:101
TOW —SSP.. WW1

TOM —.551.1°M.CORII

:"216.12'.101

TOW —.X to MI CORP

"1:16.1135101

•
•
•

•
•
•

25

DER
Enclave 2

DER
Enclave 1

Grid Operator
Enclave

HMI Enclave
DER
Enclave 6

DER
Enclave 3

DER
Enclave 4

DER
Enclave 5

2. Encryption
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Red Team Assessments

❖ Red Team conducted the following:

• Reconnaissance: inspecting the system to determine IP address, IP ports,
slave ID, protocols, etc.

• Fabrication: fake messages were inserted into the network and were
successfully replayed.

• Interception: Man-in-the-Middle (MITM) or eavesdropping of
authenticated communications to read and possibly alter data
communications.

• Interruption: Denial of Service (DoS) was used in rendering the system
unusable to authorized users, for example, by overloading the RTU
processors.

❖ For each scenario, the DER communication network was evaluated
for vulnerabilities to DoS, Replay, and MITM attacks. Risk scores
were then calculated for:

• Confidentiality based on the replay and MITM attacks

• Integrity based on the replay and MITM attacks

• Availability based on the DoS attack

• A total risk score (3-15) for the given security features

This assessment leveraged prior DER device

assessment experiences from 2017

DER CYBER ASSESSMENT COMPARISON

Protocol

Analyzed Interface
Reconnaissance
Packet Replay

MiTM
DoS

Mod Firmware
41141-thlent Logs

Password Handline

„131evice B
UDP/IP TCP.IP

AllEMBM Mthemet

x = Exploits Exist, J= Successful, o = Incomplete

Details of the vulnerabilities were shared with

the DER vendors to improve their

cybersecurity practices.

C. Carter, I. Onunkwo, P. Cordeiro, J. Johnson, -cyber
Security Assessments of Distributed Energy Resources,"
IEEE PVSC, Washington, DC, 25-30 Jun 2017.



Theoretical vs Actual Security Scores for Different
Security Defenses

If properly implemented, the following results
were expected:

Topology

Flat
Flat
Flat
Flat
Segmented
Segmented
Segmented
Segmented
Flat MTD
Flat MTD + WL
Seg MTD + WL

Encryption

None
None
RFC 7539
RFC 7539
None
None
RFC 7539
RFC 7539
None
RFC 7539
RFC 7539

Access

Insider
Outsider
Insider
Outsider
Insider
Outsider
Insider
Outsider
Insider
Outsider
Outsider

Attacks
DoS Replay MITM

Risk Level
Total Score

C I A

7
7

- I indicates the attack is possible for all DER devices
- o indicates the attack could succeed for a portion of the DER devices
- WL indicates whitelisting of the MTD network
- RFC 7539 is the IETF Protocol for the ChaCha20 stream cipher and Poly1305 authenticator

The red team was able to subvert the environments and

found the following:

Topology Encryption Access

Flat None Insider
Flat None Outsider
Flat RFC 7539 Insider
Flat RFC 7539 Outsider
Segmented None Insider
Segmented None Outsider
Segmented + PHIL None Outsider
Segmented RFC 7539 Insider
Segmented RFC 7539 Outsider

Flat MTD + WL None Insider

-✓ indicates the attack is possible for all DER devices
- o indicates the attack could succeed for a portion of the DER devices

- WL indicates whitelisting of the MTD network
- RFC 7539 is the IETF Protocol for the ChaCha20 stream cipher and Poly1305 authenticator

Attacks Risk Level
Total Score

DoS Replay MITM IC I AI

❖ Results show the importance of properly deploying security features.

The bump-in-the-wire device creating the RFC 7539 SSH tunnel was left unsecured (no password), which

enabled the red team to pivot into the rest of the network and attack all the DER devices using replay

and MITM attacks.

I. Onunkwo, B. Wright, P. Cordeiro, N. Jacobs, C. Lai, J. Johnson, T. Hutchins, W. Stout, A. Chavez, B. T. Richardson, K. Schwalm, "Cybersecurity Assessments on Emulated DER Communication Networks," SAND2019-2406, March 2019.



I Conclusions from the Red Team Assessments

❖ Denial of service is very difficult to prevent. Aggregators/utilities should implement
firewall whitelists to prevent these types of attacks.

Segmentation makes it difficult for the adversary to move between subnets. Only through
flaws in the networking implementation could the red team manipulate all DER devices.

❖ Encryption between the DERMS and DER drastically reduces the risk of Replay and
MITM attacks.

❖ MTD has the potential to drastically improve security for DER networks, but this is still
an area of research.

❖ It is important that developers add layers of defense by reviewing and pushing secure
code to applications.



I Latency from Network Security Features vs Device/Network Delays

-.- Increased latency when adding
segmentation, encryption, and moving
target defense is minimal

In prior work, it was found that MTD increased the average
latency <1 ms but caused slightly higher dropout rates
(approx. 1 dropout per 33.3 seconds with IP randomization
every 3 seconds) [1]

❖ Architecture (switch and router hops) and
communication medium (copper vs. fiber)
is more important to data-in-fight times
than geographic separation
- Connection to TX is over a dedicated fiber line and has

minimal network hops.

NM PMU has numerous routers and switches in the
communication path which slow down the packets.

❖ DER Modbus Read/Write times vary
significantly. Sometimes taking over 1
second!

[1] A. R. Chavez, J. R. Hamlet, and W. Stout, "Artificial diversity and defense security
(ADDSec) Final Report," Tech. Rep. SAND2018-4545, Sandia National Laboratories, April 2018.
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Will adding security features to DER networks compromise performance?

÷ Device and network latency is large
Network topology, media, and geographic distances have the possibility of adding 50-100 ms of
latency for utility-to-DER communications

DER read and write times vary widely. They can be 1+ seconds in some situations.

Additional latency from security features is relatively small
Network segmentation adds less than 1 ms

Encryption adds on the order of 3-5 ms of additional latency

MTD adds 1 ms of latency

Finding: For the proposed cybersecurity features, it is not believed they will impact the
grid-support service performance since they add only contribute a minor percentage of
the total latency between the utility and DER.



Recommendations for Future Research

+ Understand the Risk
• Create generalized threat model (e.g., using STRIDE modelling) for PV systems that

includes utilities, aggregators, and DER vendors

• Continue to red team equipment and investigate firmware-level vulnerabilities in
DER devices

• Expand power system simulations of "nightmare" attacks

+ Harden Networks
• Create Intrusion Detection System (IDS) technologies for aggregators and grid

operators

• Develop power system fallback operating modes under cyber attacks or low
communication scenarios

• Use virtualized networks with DER emulation to study new defense technologies,
e.g., Moving Target Defense

+ Harden DER equipment
• Det)loy Trusted Platform Modules (TPMs) or Secure Elements to securely store
DER cryptographic keys

• Use Physical Unclonable Functions (PUFs) to provide authentication for network
nodes

• Investigate software obfuscation to disguise DER functionality from reverse
engineers

o Prevent unauthorized tampering of executable code over the network with
TrustZone or Mobile Trusted Modules (MTMs)
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