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Diverse Applications, Common Challenges

Liquid omization Explosive Fragmentation

Combustion

Unifying Challenges:
• Missing 3D information
• Distortions from shock-waves a

thermal gradients
• Limited optical access
• Need for quantitative result
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Measurements Require Advanced Diagnostics
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5 Fragmentation Models Need Experimental V&V
Experiment

t = 1.0 itts

1 0 rnm
mom

Measurement needs include:

•Initial case deformation DIC

•Breakup dynamics X-ray

*Sizes and Velocities Fragment Tracking

Model (Courtesy F. Perez)

1
1

*With Frank Perez, Andrew Thompson, Steve Attaway



6  3D Imaging for a 3D World

2D imaging or point-wise
measurement techniques are
often insufficient to resolve 3D
flow phenomena

• Repetition needed to capture
spatial statistics

air
flow

high-speed video of a ethanol drop
in an air-stream
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digital holographic measurement
(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field

*With Phil Reu, Jun Chen (Purdue), Jian Gao (Purdue)



71 Digital lnline Holography (DIH)
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digital holograms of the breakup of an ethanol drop
air-strearn (Gao, Guildenbecher et al 2013, Opt. Lett.)
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8 I Digital lnline Holography (DIH)
iSolid Roc ket Propellant particles ejected from the surface of a burning propellant 

captured with 3D hologra = 0.00 rmitp$
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9 HE Initiation by Fragment Impact

*With John Yeager, Pat Bowden, Joe 011es, Pat Ball



10 HE Initiation by Fragment Impact
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11 Alternative 3D Imaging Architectures?

Plenoptic cameras use micro-lens arrays and white light to create a 3D image
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*With Elise Hall (Auburn University), Brian Thurow (Auburn University)



12 Plenoptic Imaging of Fragments
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13 Fragment Tracking at 2 MHz
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*DIC, x-ray, and fragment tracking experiments are supported by
the Joint DoD/DOE Munitions Program
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14 Fragmentation Models Need Experimental V&V
Experiment

t = 1.0 itts

1 0 rnm
mom

Measurement needs include:

•Initial case deformation DIC

•Breakup dynamics X-ray

*Sizes and Velocities Fragment Tracking

Model (Courtesy F. Perez)

1
1

*With Frank Perez, Andrew Thompson, Steve Attaway



15 I Case strain at 5 MHz (P. Reu,T. Miller)

Digital Image Correlation (DIC)

Full-field surface tracking for solid
mechanics investigations
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16 X-Ray Diagnostics at 2 MHz

X-rays penetrate the flash
and smoke during
fragmentation

Pulsed X-ray
Source Array

I High-Speed
Object Camera

Scintillator

Six-Headed Flash System

II
Working toward:

• Continuous movies

• Tomographic
reconstruction

CW X-ray
Source j 1.11 High-Speed

Object Camera

Scintillator

Continuous Wave System

*With Ben Halls, Luke Lebow

B. Halls, L. Lebow



17 ~ i 0 pound fragmenting explosive device at SNL

Reflective Screen

*With Phil Reu, Tim Miller, Mark Anderson, Steve Attaway, and many others



18
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19 Soot Concentration and Sizing

/

LII Ca
Config,

Laser Induced Incandescence (LII)

First Detonator LII Measurements
*With Daniel Richardson, Yi (Ellen) Chen, Lee Stauffacher, Tom Grasser, Marley Kunzler



20 Time-resolved Laser Induced Incandescence
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*With Yi (Ellen) Chen, Emre Cenker, Daniel Richardson, Sean Kearney, Ben Halls, Scott Skeen, Chris Shaddix



21 Time-resolved Laser Induced Incandescence
-1 00 ns

Background Intensity LII Signal Intensity

Lll Signal Recorded
at '10 MHz

Decay Time Constant

*With Yi (Ellen) Chen, Emre Cenker, Daniel Richardson, Sean Kearney, Ben Halls, Scott Skeen, Chris Shaddix



22 Imaging Through Shock Waves
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23 Imaging Through Shock Waves
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24 Imaging Through Shock Waves
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25 Imaging Through Shock Waves
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26 maging Through Shock Waves

iaditional DIH
focused at x = 0

*With Kate Hoffmeister, Marley Kunzler, Daniel Richardson, Sean Kearney



27 Imaging Through Shock Waves

*With Kate Hoffmeister, Marley Kunzler, Daniel Richardson, Sean Kearney



2 8 Imaging Through Shock Waves

Very recently, we have extended
this to MHz rate video
recording using a pulse burst
laser
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*With Yi (Ellen) Chen, Jeff Heyborne, Mike Smyzer (Purdue), Mikhail Slipchenko (Purdue)



29

1

maging Through Shockwaves
Fragmentlng

Detonator

*With Yi (Ellen) Chen, Jeff Heyborne, Mike Smyzer (Purdue), Mikhail Slipchenko (Purdue)
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t = 3.00 ms

350 m/s

Questions?

5 cm Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly

owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy's National Nuclear Security
Administration under contract DE-AC04-94AL85000.



31 Aerodynamic breakup experiments

Secondary drop sizes/positions extracted
with custom algorithms

• Comparison with phase Doppler
anemometer (PDA) data confirms accuracy
of measured sizes
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32 Aerodynamic Breakup of a Water Column
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*With Justin Wagner, Yi (Ellen) Chen, Ed DeMauro, Paul Farias



33 Aerodynamic Breakup of a Water Column
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34 Aerodynamic Breakup of a Water Column
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35 Aerodynamic Breakup of a Water Column

Combined Level Set Volume of Fluid
(CLSVOF) method (M. Arienti)
• Captures interfacial dynamics
• Good initial agreement with measured quantities
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36 Solid Propellant Diagnostics
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Solid Propellant Diagnostics
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particles ejected from the surface of a burning propellant
captured with 3D holography 0.00 mg

reconstructed orthogonal view
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39 _ New 5X Magnification, Long-Standoff Plenoptic
First demonstration
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40 New 5X Magnification, Long-Standoff Plenoptic
Developments enable measurement in harsh environments

Plenoptic imaging of a propellant fire

*With Marley Kunzler, Bill Sweat, Brian Thurow (Auburn University), Jenna Klemkowsky (Auburn University)



41 1 Exploring Application to 3D Density Gradients
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Plenoptic Background
Oriented Schlieren (BOS)

• Optical flow tracks
apparent motion

• Plenoptic perspectives
allows 3D rendering

*With Marley Kunzler, Bill Sweat, Brian Thurow



42 Measuring Particle Temperatures

Laser

L

Propellant
Strand

700 nm

905 nm

BS1 BS2 Filter

700 nm
Filter

905 nm

*With Yi (Ellen) Chen, Kate Hoffmeister, Marcia Cooper, Lee Stauffacher, Mike Oliver, Sean Kearney, Ephraim Washburn (China Lake)



43  Measuring Particle Temperatures

2200 2400 26k1 280.0 3000

Temperature (K)

Particle Emission is Approximated as a Gray

Body

• Critical to avoid gas phase emission peaks

3500

E 3000
Many thousands of particles measured a
to gather statistics

o_ 2500
• Particle temperatures approximately bounded g
by melting and boiling points of Al and A1203 I-
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• On average, particles are hotter than gas-phase

temperatures measured with CARS
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*With Yi (Ellen) Chen, Kate Hoffmeister, Marcia Cooper, Lee Stauffacher, Mike Oliver, Sean Kearney, Ephraim Washburn (China Lake)



44 Measuring Particle TemperaturPs

Measurements are also
possible at high-speed

• 20 kHz in this example

Diameter (pm)

200 400
Temperature (K)

500 2000 2500 3 )00 3500

*With Yi (Ellen) Chen, Kate Hoffmeister, Marcia Cooper, Lee Stauffacher, Mike Oliver, Sean Kearney, Ephraim Washburn (China Lake)



45 Velocimetry from a single viewport?

laser

.:.• .
-..-.- 

seeded slii*„
flow

Particle image velocimetry (PIV)

• Quantifies 2D flow velocities by
tracking the motion of seed particles

•Widely used in fluid dynamics from
micro-fluidics up to windtunnel scales
and beyond

Requirements for two
orthogonal optical access ports
can limit some applications

PIV in the Sandia wind-tunnel
(courtesy Beresh et al)

*With Megan Paciaroni (Ft. Lewis College), Yi (Ellen) Chen, Kyle Lynch



Backscatter Particle Image Velocimetry via
46 Optical Time-of-Flight Sectionin PIVO S)
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47 PIVOTS

Scatteri ng
from tube
and cell

walls

I
Water Seeded with 40 µ,rn

neutrally buoyant
particles

*With Megan Paciaroni (Ft.



48 PIVOTS

Water Seeded with
40 µ,rn neutrally buoyant

particles
*With Megan Paciaroni (Ft.
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49 PIVOTS

Water Seeded with
40 µ,rn neutrally buoyant

particles
*With Megan Paciaroni (Ft.
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