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2| Diverse Applications, Common Challenges
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Fragmentation Models Need Experimental V&V

Experiment

t=1.0 us

Measurement needs include:
°Initial case deformation = DIC

*Breakup dynamics = X-ray

*Sizes and Velocities = Fragment Tracking

*With Frank Perez, Andrew Thompson, Steve Attaway

Model (Courtesy F. Perez)




«1 3D Imaging for a 3D World ]

2D imaging or point-wise
measurement techniques are
often insufficient to resolve 3D
flow phenomena

* Repetition needed to capture
spatial statistics

air
flow

. ol X (mm)
high-speed video of a ethanol drop

in an air-stream digital holographic measurement
(Gao, Guildenbecher et al, 2013, Opt. Lett.)

Holography is an optical technique to record and reconstruct a 3D light field

*With Phil Reu, Jun Chen (Purdue), Jian Gao (Purdue)




71 Digital Inline Holography (DIH)
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digital holograms of the breakup of an ethanol drop
air-stream (Gao, Guildenbecher et al 2013, Opt. Lett.)

*With Phil Reu, Jun Chen (Purdue), Jian Gao (Purdue)



Digital Inline Holography (DIH)

ﬁo l'l d ROC ket P rope l l an t particles ej(?cted from the surface 0? a bul}jlpg propellant

captured with 3D holographyz =

A4
R
RS

reconstructed orthogonal view

T TOER

.

200 400 600
particle diameter [um]

*With Ellen (Yi) Chen, Justin Wagner, Marcia Cooper, Lee Stauffacher, Paul Sojka (Purdue), and many others



HE Initiation by Fragment Impact

*With John Yeager, Pat Bowden, Joe Olles, Pat Ball



ol HE Initiation by Fragment Impact
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*With John Yeager, Pat Bowden, Joe Olles, Pat Ball




n 1 Alternative 3D Imaging Architectures?

Plenoptic cameras use micro-lens arrays and white light to create a 3D image

diameter d [um]
150 200 250 300 350 400

(Hall et al 2016, Appl. Opt.)
*With Elise Hall (Auburn University), Brian Thurow (Auburn University)




2| Plenoptic Imaging of Fragments

3D plenoptic image at =52 us
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*With Elise Hall (Auburn University), Brian Thurow (Auburn University), Lee Stauffacher



s | Fragment Tracking at 2 MHz

t=32.50 us
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*DIC, x-ray, and fragment tracking experiments are supported by

the Joint DoD/DOE Munitions Program
*With Phil Reu, Tim Miller, Pat Ball



Fragmentation Models Need Experimental V&V

Experiment

t=1.0 us

Measurement needs include:
°Initial case deformation = DIC

*Breakup dynamics = X-ray

*Sizes and Velocities = Fragment Tracking

*With Frank Perez, Andrew Thompson, Steve Attaway

Model (Courtesy F. Perez)




Case strain at 5 MHz (P. Reu, T. Miller)
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Digital Image Cotrelation (DIC) Colored by Radius

Full-field surface tracking for solid

mechanics investigations
RP-80 Detonator

Left Camera Right Camera

Change in Radius

Z-Position

*With Phil Reu, Tim Miller, Pat Ball




16‘ X-Ray Diagnostics at 2 MHz (B. Halls, L. Lebow)
time = 0000 ns

1cm_

X-rays penetrate the flash
and smoke during
fragmentation
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. Tomographic

reconstruction
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*With Ben Halls, Luke Lebow



71 ~10 pound fragmenting explosive device at SNL
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Device
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*With Phil Reu, Tim Miller, Mrk Anderson, Steve Attaway, and many



~10 pound fragmenting explosive device at SNL

=152 ms
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Top-Down View
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diameter, d
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Right Camera View
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*With Phil Reu, Tim Miller, Mark Anderson, Steve Attaway, and many others



vl Soot Concentration and Sizing

=FNiE | 3ser Induced Incandescence (LII)
|

First Detonator LIl Measurements
*With Daniel Richardson, Yi (Ellen) Chen, Lee Stauffacher, Tom Grasser, Marley Kunzler




01 Time-resolved Laser Induced Incandescence
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*With Yi (Ellen) Chen, Emre Cenker, Daniel Richardson, Sean Kearney, Ben Halls, Scott Skeen, Chris Shaddix




211 Time-resolved Laser Induced Incandescence

-100 ns LIl Signal Recorded
at 10 MHz

Background Intensity LIl Signal Intensity Decay Time Constant
*With Yi (Ellen) Chen, Emre Cenker, Daniel Richardson, Sean Kearney, Ben Halls, Scott Skeen, Chris Shaddix
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Imaging Through Shock Waves
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*With John Yeager, Pat Bowden, Joe Olles, Pat Ball
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» 1 Imaging Through Shock Waves

TraditionalDIH

*With Kate Hoffmeister, Marley Kunzler, Daniel Richardson, Sean Kearney



21 Imaging Through Shock Waves
Traditional{DIH

¥
{
H
i
E
i‘. !
’. "‘:‘
ot
i\";




5 1 Imaging Through Shock Waves
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*With Kate Hoffmeister, Marley Kunzler, Daniel Richardson, Sean Kearney



Imaglng Through Shock Waves
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*With Kate Hoffmeister, Marley Kunzler Daniel Richardson, Sean Kearney



Imaging Through Shock Waves
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*With Kate Hoffmeister, Marley Kunzler, Daniel Richardson, Sean Kearney
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1 Imaging Through Shock Waves
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*With Yi (Ellen) Chen, Jeff Heyborne, Mike Smyzer (Purdue), Mikhail Slipchenko (Purdue)



» | Imaging Through Shockwaves

Fragmenting
Detonator

Pumg 1,

*With Yi (Ellen) Chen, Jeff Heyborne, Mike Smyzer (Purdue), Mikhail Slipchenko (Purdue)






s | Aerodynamic breakup experiments

Secondary drop sizes/positions extracted
with custom algorithms

* Comparison with phase Doppler
anemometer (PDA) data confirms accuracy
of measured sizes
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*With Phil Reu, Jun Chen (Purdue), Jian Gao (Purdue)




Aerodynamic Breakup of a Water Column

Diaphragm Driven Sections

Section

laminar water jet

5 mm

*With Justin Wagner, Yi (Ellen) Chen, Ed DeMauro, Paul Farias



1| Aerodynamic Breakup of a Water Column
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*With Justin Wagner, Yi (Ellen) Chen, Ed DeMauro, Paul Farias



| Aerodynamic Breakup of a Water Column
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*With Justin Wagner, Yi (Ellen) Chen, Ed DeMauro, Paul Farias



5 | Aerodynamic Breakup of a Water Column

Combined Level Set Volume of Fluid
(CLSVOF) method (M. Arienti) Liquid Flowl §

* Captures interfacial dynamics

* Good initial agreement with measured quantities ~————s
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*With Justin Wagner, Yi (Ellen) Chen, Ed DeMauro, Paul Farias, Marco Arienti




x| Solid Propellant Diagnostics
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*With Marcia Cooper, Walt Gill, Lee Stauffacher, Mike Oliver, Tom Grasser



Solid Propellant Diagnostics
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*With Marcia Cooper, Walt Gill, Lee Stauffacher, Mike Oliver, Tom Grasser



particles ejected from the surface of a burning propellant
captured with 3D holography

Recorded at
20,000 fps

Camera: Photron
SA-Z

Laser: Coherent
Verdi V6

43,684 frames 2>
15,991 drops

Measured mass flux
is 0.24 mg/s - mm?

From burn rate and
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» | New 5X Magnification, Long-Standoff Plenoptic
First demonstration
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*With Marley Kunzler, Bill Sweat, Brian Thurow (Auburn University), Jenna Klemkowsky (Auburn University)



o1 New 5X Magnification, Long-Standoff Plenoptic
Developments enable measurement in harsh environments |

Plenoptic imaging of a propellant fire

*With Marley Kunzler, Bill Sweat, Brian Thurow (Auburn University), Jenna Klemkowsky (Auburn University)
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Exploring Application to 3D Density Gradients
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Plenoptic Background
Oriented Schlieren (BOS)

* Optical tlow tracks
apparent motion

* Plenoptic perspectives
allows 3D rendering

*With Marley Kunzler, Bill Sweat, Brian Thurow (



21 Measuring Particle Temperatures
905 nm

BS2 Filter

______ BS1
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Filter

Propellant
Strand

*With Yi (Ellen) Chen, Kate Hoffmeister, Marcia Cooper, Lee Stauffacher, Mike Oliver, Sean Kearney, Ephraim Washburn (China Lake)
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Measuring Particle Temperatures

a0 e

Particle Emission is Approximated as a Gray
Body

* Critical to avoid gas phase emission peaks
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*With Yi (Ellen) Chen, Kate Hoffmeister, Marcia Cooper, Lee Stauffacher, Mike Oliver, Sean Kearney, Ephraim Washburn (China Lake)



4| Measuring Particle Temperatures

Measurements are also
possible at high-speed

* 20 kHz 1n this example

Diameter ( pom) . '», o
0 200 400 ¥ h A __ %

-

*With Yi (Ellen) Chen, Kate Hoffmeister, Marcia Cooper, Lee Stauffacher, Mike Oliver, Sean Kearney, Ephraim Waéhburn (China Lake)



s 1 Velocimetry from a single viewport?

camera

7
/
/
/
/

seeded
flow

Particle image velocimetry (PIV)

* Quantifies 2D flow velocities by
tracking the motion of seed particles

* Widely used in fluid dynamics from
micro-fluidics up to windtunnel scales

and beyond

Requirements for two

orthogonal optical access ports
can limit some applications

PIV in the Sandia wind-tunnel
(courtesy Beresh et al)

*With Megan Paciaroni (Ft. Lewis College), Yi (Ellen) Chen, Kyle Lynch




Backscatter Particle i elo
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PIVOTS

Water Seeded with 40 p

neutrally buoyant
particles

*With Megan Paciaroni (Ft.

{=1.0 ms

Scattering
from tube
and cell
walls

Without OKE gate



s PIVOTS t= 1.0 ms
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»1 PIVOTS

Water Seeded with |

40 um neutrally buoyant
particles

*With Megan Paciaroni (Ft.
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