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Periodic Table of the Elements

18
VIIIA
8A

2

13 14 15 16 17 Heil!
IIIA IVA VA VIA VIIA Helium

3A 4A 5A 6A 7A 4 003

5 6 7 8 9 1 0

B C N 0 F Ne
Boron Carbon Nitrogen Oxygen Fluorine Neon
10 811 12 011 14 007 15.999 18.998 20.180

13 14 15 16 17 18

3 4 5 6 7 8 9 10 11 12 Al Si P S CI Ar
IVB VB VIB VIIB I B IIB Aluminum Silicon Phosphorus Sulfur Chlorine Argon

3B 4B 5B 6B 7B 

i....--- V;II --...\

1B 2B 26.982 28.086 30.974 32066 35453 39.948

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
scandium Tile.. Vanadium Chrommin Manganese lion Cobalt Nickel Copper Zinc Gallium Germanium Aisenic Selennun Elmn,ne Itlypton
44.956 47.88 50.942 51.996 54.938 55.933 58.933 58.693 63.546 6639 69.732 7261 74.922 78.09 79.904 84.80

39 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Yttrium Zirconium Niobium Moly bdenm, Technetimn Ruthenium Rhodomr PMIadom Silver Cadmium Indium Tin Antimony Tellunum iodine Xenon
88.906 91.224 92.906 95.94 98.907 101.07 102.906 106.42 107.868 112.411 114.818 118.71 121.760 127.6 126.904 131.29

57-71 72 73 74 75 76 77 78 79 80 81 83 84 85 86

Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn
Flafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thank. Lead Bismuth Polonium Astatine Radon
178.49 180.948 183.85 168.207 19023 19222 195.08 196.967 200.59 204.383 207 2 208 980 [208 982] 209.987 222018

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

inide
eries

Rf Db Sg Bh Hs Mt Ds Rg
Rutherfordiunn nubnium Seaborgium Bohm. Ras.. Meitnenum Oarmstadtium Roentgen.,

12661 [264] [269] 1268112611 12621 12691 12721

Cn Uut Fl Uup Lv Uus Uuo
Copemicium Ununtnuir Fleroymm Ununpentium Livermonum Ununseptit. Unonoctmin

[277] unknown 12891 unknown [298] unknown unknown

60 61 62 63 64 65 66 67 68 69

Pr Nd Prn Snn Eu Gd Tb Dy Ho Er Tm Yb
Praseodymlrlm Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutet

140.908 14424 144.913 150.36 151 966 157 25 158.925 16250 164,930 167 26 168934 • 

90 ~ -- 01 102 103

c Th
AC11111211 Thori
227 028 232.0

Pu Am Cm Bk Cf Es Fm Md No Lr
Plutonium Americium Curium Berkelium Californium Einstelniut, Fern) it1,11 M11 endeleVili /11 NO beliUnt Lawrenclum
244.064 243.061 247.070 247070 251.080 [254] 257 095 2587 259.101 [262]

Alkali
Metal 

All Transition
Earth Metal 

Semimetal Nonmetal

s sp d sp sp sp p
Type of electrons governing properties

Ratio of d and f shell volume to Wigner-
Seitz volume of transition elements

Phys. Rev. B 3 7, I 0674 (1988).

Develop an exchange-correlation functional
that takes electron confinement into account.
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EXC

Exc

• Exactly solvable reference systems
• Exact constraints
• Chemical intuition

12 dr n(r) exc

{Exc (n, Vn, VT', T)
cxc (n, Vn)

Exc (n)

• • •

Chemical accuracy

(1 kcal/mol, 0.002 Hartree)

unoccupied {0j (r)}

occupied {0i(r)}

T r , V2n(r)

Vn(r)

n(r)

generalized RPA RPA+

hyper-GGA  B3LYP, PBEO

meta-GGA  TPSS, SCAN

GGA HBE, AMO5

LDA

Hartree world
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Subsystem Functional Scheme
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I

Divide domain
into subsystems

dr n(r) Ex, [n, VTI,T;

1
{Th %}] (r)

Specialized functionals in
different subsystems

Exactly known subsystems
• Uniform electron gas

• Airy gas

ft = is' + f/sext
—F z —Do < z < L

, c5j(z) oc Ai(z)
Do z > L

Universal interpolation through the
electron localization function

Zi..F=0.5

1 
0/2. e:°/-/-77 electro.n 

i ilk phys‘cs
w2

• Harmonic oscillator gas ft = t + —z2 
0. fr) cx ei(ki x+k2 Y)Hi(z) e—z2/2

2 ' 3 )
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[l c„ (n(r), Vn(r) , ELF(r))]`'1Vnl, =
[l ex (n(r), Vn(r) , ELF (r))]LDA

[l Ex (n(r), Vn(r) , ELF(r))]L'A = — 
4
3c (3-\/7 exp[—g]a (n(r), Vn(r)

[l Ex(n(r), Vn(r), ELF(r))]conf

, ELF(r)))1/3

a() (a) a2 (a)f2 a4 (a)f4 a6 (a)f6 — f8

—f8/[2 V2a / EZ (2 \/2a f)] + 1
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Enhancement Factor • Exchange
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[l cx (n(r), Vn(r)
Vni, [l EX (n(r), I'Vn(r)

[l Ex (n(r), Vn(r)

[l Ex (n(r), Vn(r) , ELF(r))]conf

1 1 h(t) L1(t) 

(t) 2 t + t

cto (a) = 2 A(a) , a2(a) = 
B (a)

2(a)

C (a) B (a) 

+ 1-1- 

A (

az") 48a2 2 (1)oz 

, ELF(r))]conf

,ELF(r))]LDA

, ELF(r))]LDA = — z3TT (3 Or exp[—g]a (n(r), Vn(r)1 , ELF(r))) 1/3

cto (a) + a2((x)f2 a4 ((x)fzi a6((k)f6 — f's

2 A(a)

a6 (a)

—f8/ [2 V2a / EX (2 \/2a f)] + 1

D (a) C (a) B (a) A(a)

2880(20 48a2 ± 4a 3
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, ELF(r))]conf
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E 
1 1 /1(0 + Ll(t)

. CO = i 2 t t

ao (a) = 2 A(a) , a2(a) = 
B (a) 

2 A(a)
2(a)

a4(a)
C (a) B (a) D (a) C (a) B (a) A(a) 

+ A(a) , a6(a)
48a2 2a 2880a3 48a2 + 4a 3

1 — -y — ln(-2a) — F(0, —2a) 2-\/2a 1 — e2' 4(2a)3/2
A(a) =    +  457 

2 2 ' 2 ' 2 ' 2 ' 
2a)F 1 3 - 5 7 -

40r 37r 8 Ora
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Parametrization of HOG Exchange
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Accurate parametrization across a wide range of confinement parameters
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cr,C[n, 'Vn, T](r) = 6;3," [n, 'Vr(i-d, T] (r) + €F,T" [n, 1Vn] (r)
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Bulk-Surface-Confinement Exchange-Correlation Functional
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Ex"CC[n, T](r) = ex"[n, , T](r) + €H,"[n,74 Vrd 1Vnil(r)

E
BSC _ Ex surf {1 +

X

1 y
L-/1- conf —1][1—kx„,f(Xsurf,2 —1)]Xsurf,2}+EZDnf {1 + Xconf[Xsurf ,2 — 1]} [1 - XconfXsurf,2]
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Bulk-Surface-Confinement Exchange-Correlation Functional
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€1)3(scc [72, !Vr7), , , T1(,r) — exsc 
[ri, r,

I V n, T] (r) t+ 
 _HOG
c [n, 'Vrin,11(r)

BSC i] X 1)]X Xco„f 1]6X = 6s,rf {1 +[X c,„„f — [1 + conf ( surf,2 — surf ,21 + EZnf {1 + [ surf,2 — }

El-clOG [n, .vrnd](r) _ €1,c1DA [n
] (
r i ,
) {XSurf,l(r, TO + [1 — Xsurf,1(r, TO] (71 + 72 rsil

[1 — Xconf surf,2]
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Bulk-Surface-Confinement Exchange-Correlation Functional
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€1)3(scc [72, T1(, — exsc[ri, ,7v T] (r) + -HOG
tC 

[Ti, 'Vrin 
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Xconf (r, 7/2) —
1 + 772 [ELF(r) — 1/2]4

2
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1 
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Constraining the Functional Form wi h he Jellium Surface
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Divide domain
into subsystems

dr n(r) Ex, [n, Vn, T;

1
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Specialized functionals in
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Assessin • Enhancement Factor
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Properties
Exchange
• Recovers the correct uniform gas limit
• Satisfies linear response of the UEG

(quadratic in the small s limit)
• Partially satisfies LO and tight bound 1.5

Correlation X 1.0
• Recovers the correct uniform gas limit LL

0.5

Ex fdr n(r)cuxnif(n) Fx (n, Vnl, T)

• I • • • •

i LO bound

i tight bound
..-='"

PBE .

AMO5 _
........"

BSC (ELF=030.5)-

BSC (ELF=1) -

0.Q . . .
u.0 0.5 1.0 1.5 2.0 2.5 3.0

s
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Assessin • t C Enhancement Factor for t ellium Surface
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Properties
Exchange
• Recovers the correct uniform gas limit
• Satisfies linear response of the UEG

(quadratic in the small s limit)
• Partially satisfies LO and tight bound

Correlation
• Recovers the correct uniform gas limit

2.2

2.0

0 1.8
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1.4
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Ex, — dr n(r) €1;(nif(n) Fx, (n, 1Vnl, T)

----------
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0.5 1.0 1.5 2.0 2.5 3.0

s

Jellium surface
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••••-

••••
•••••--
P B E

▪ vo.
vv.▪ •••• ▪ 1•0

•••••
•••-
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Assessing the Bulk-Surface-Confinement (BSC) Functional
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Jellium surface

rs
LDA ir:CE a i) 6( /1 0 5 4:33( S C

c (TX C

2.00 3354 3413
2.07 2961 3015
2.30 2019 2060
2.66 1188 1214
3.00 764 781
3.28 549 563
4.00 261 268

MAPE 2
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Assessing the Bulk-Surface-Confinement (BSC) Functional
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Jellium surface

rs
LDA ir:CE a i) 6( /1 0 5 4:33( S C

c (TX C

2.00 3354 3264 3413
2.07 2961 2879 3015
2.30 2019 1960 2060
2.66 1188 1150 1214
3.00 764 738 781
3.28 549 530 563
4.00 261 251 268

MAPE 2 5
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Assessing the Bulk-Surface-Confinement (BSC) Functional
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Jellium surface

LDA (5)PcBE er AMOS 4:5(3 SCcy;
rs C ‘-')(C c CYXC

2.00 3354 3264 3414.0 3413
2.07 2961 2879 3014.6 3015
2.30 2019 1960 2058.4 2060
2.66 1188 1150 1213.5 1214
3.00 764 738 782.0 781
3.28 549 530 563.4 563
4.00 261 251 269.6 268

MAPE 2 5 0.4
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Assessing the Bulk-Surface-Confinement (BS Functional
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Jellium surface

LDA PBE(  er AMOS (TBSCcy;
rs (5)C ‘-')(C ‘-')(C CYXC

2.00 3354 3264 3414.0 3413.72 3413
2.07 2961 2879 3014.6 3014.64 3015
2.30 2019 1960 2058.4 2058.99 2060
2.66 1188 1150 1213.5 1214.07 1214
3.00 764 738 782.0 782.01 781
3.28 549 530 563.4 562.99 563
4.00 261 251 269.6 267.73 268

MAPE 2 5 0.4 0.05

0.7
0.6
0.5

±1- 0.4
Lu 0.3

0.2
0.1
0.0
-10 -8

rs
2.00
2.07
2.30
2.66
3.00
3.28 -
4.00

-10 -8

-6 -4 -2 2 4
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Avoiding Step Features
-

Jellium surface
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Avoiding Step Features
-

Jellium surface
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nerating a Test Set of Binary Transition Metal ompounds
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Laboratories

Selection of binary transition metal compounds
• 26 transition metals
• 80 binary compounds
• Experimentally known configurations
• Several functionals (LDA, PW9 I , PBE, AM05, PBEsoI, RTPSS, SCAN)

Data analysis
• Standard test set

All experimental and DFT ground states and "almost" ground states
• Micro test set

< 300 structures capturing the most astounding failures and important
experimental results

• Macro test set
All —12,000 structures

Data management
NIST Materials Data Repository

The National Institute of Standards and Technology has created a materials science data
repository as part of an effort in coordination with the Materials Genome Initiative (MGI) to
establish data exchange protocols and mechanisms that will foster data sharing and reuse
across a wide community of researchers, with the goal of enhancing the quality of materials
data and models. Data present on this system are varied and may originate from within NIST

E

Liz Decolvenaere (DE Shaw Research
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Summary
• Implementation in electronic structure codes

Aet
Elk code (http://elk.sourceforge.net)

(https://gitlab.com/libxc/libxc)

• Assessment for materials (energetics, lattice constants, and elastic properties)

Libxc - a library of exchange-correlation functionals for density-functional theory

Collaborators
• Liz Decolvenaere (DE Shaw Research)
• Francisca Sagredo (UC, Irvine)
• Ann E. Mattsson (Los Alamos National Laboratory)
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Ground-State Density Functional Theory in a Nutshell
Sandia
National
Laboratories

Hamiltonian : k = i + -(7 + W"
Universal functional : F [n] = ,rnn (Wll + WeeF 

Ground-state energy :

Kohn-Sham equations :

t1f)

11;v = min {11 [n] + f d3 r n(r) v(r)}

2ci Oi (r) = { V2  + vs (r) } Oi (r)

N

Electronic density : n(r) — 01 (r)0(r)
i

Exchange-correlation energy : F[n] = T5[n] + U[n] + Vx, [n]

, (SU [n] 6  iii'x,[n]vs(r) = v(r) + 6-71(r) + 6n(r)
Kohn-Sham potential :
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Wigner-Seitz Radius
Sandia
National
Laboratories

rs —
4n )3 

1/3

(7r 

The Wigner-Seitz is a
dimensionless radius of a
sphere that contains the
charge of one electron and is
commonly used as a measure
to characterize the density of a
system.
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Electron Localization Function
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ELF
1 + [D 1 D h]

2

1 1Vn(r)12
D = Ts

8 n(r)

Dh 
-

130 (372)2/3 n(05/3

1

A measure of the lilcelihood of
finding an electron in the
neighborhood space of a
reference electron located at a
given point and with the same
spin.

Yttrium barium copper oxide

Charge density Charge density gradient
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nhancement Factor of HOG 
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BSC Exchange-Correlation Functional
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h'xc[n] d3r n(r) cx,[n, T ; {7i}, {rii}](r)

EXscc [n,lVn I , ELF] (r) = EX" [n,1Vn I, ELF] (r) + EIC" [n,1Vn I] (r)
E 113(SC = Ezirf {1 + [XELF 1][1 + XELF Pcsurf,2 - 1)]xsurf,2}

+ Eznf {1 + XELF [Xsurf,2 1]} [1 - XELFXsurf,2]

1/2 [ELF(r) - 1/2]4
x-E,F(r; 772)

Xsurf,2(r) n3)

E :cucl k [n]

E;lucr f [n] (r)

ETIf [n](r)

EIC" [n n I] (r)

Xsurf,l(r; ni)
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2

1 e2 7/3 s2(r)
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0
= 1  

82( 

1 + s2(r)

= €1AxDA [n, IVnl, ELF] (r) FrG[n, VnI, ELF] (r)

[l Ex [n,IVnl, ELF] (r)]HOG 
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Assessing the Bulk-Surface-Confinement (BSC Functional
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Jellium surface
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