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Courtesy of K. Dewhurst, Max Planck Institute of Microstructure Physics (2015).
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Coulomb coupling parameter
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Basic Research Needs for HEDLP, Report of the
Workshop on HEDLP Research Needs, DOE (2008).
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Creating HED conditions requires
transferring an enormous amount of energy
to a target in a very short period of time.

Z Machine, Sandia National Laboratories.
(https://www.sandia.gov/z-machine/about_z/how-z-works.html)

Compression of energy in time and space in
pulsed power facilities (Z machine) enables
exciting science (astrophysics, planetary
science, inertial confinement fusion).

Z Machine, Sandia National Laboratories.
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X-Ray Thomson Scattering

Hard x-rays

Sample of WDM
(opaque to optical probes)

Measure inelastically
scattered x-rays

c,(-) = cui — ws

q = qi — qs

qs = 2qi sin(0/2)

• X-ray Thompson scattering probes density, ionization state,
structure, temperature, etc.
X-ray Thomson scattering in high enercy density plasmas
Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 1625 - Published 1 December 2009

• Cross section is proportional to dynamic structure factor
d2 cr q

= 
s

  aT S (q, co)
c1C2clw qi
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Interplay between Theory, Simulations, and Experiment
Sandia
National
Laboratories

Electronic
structure
theory

Electronic structure
theory provides input

to magneto-
hyd rodynam ics
simulations.

Computational
fluid

dynamics

Computational fluid
dynamics

simulations suppprt
design of HED
experiments.

HED experiments
and diagnostics

benchmark theory.

1
H ED

experiments /

/

LCLS

Stopping power

Measurement of Charged-Particle Stopping in Warrn Dense
Plasma
A. B. Zylstra, J. A. Frenje, P. E. Grabowski, C. K. Li, G. W. Collins, P. Fitzsimmons, S. Glenzer, F. Graziani,
S. B. Hansen, S. X. Hu, M. Gatu Johnson, P. Keller, H. Reynolds, J. R. Rygg, F. H. Seguin, and R. D.
Petrasso
Phys. Rev. Lett 114, 215002 - Published 27 May 2015

0E 1 0
= (E)

ax v at

Dynamic structure factor

T ITTER

A higher-than-predicted measurement of iron
opacity at solar interior temperatures
1. L. Elaaex!, T. Nagayuna. G. P. LoiseT, G. A. Rochali, C. Blanard2. Colgan'. Ph. Goole. G. Paussurier'. C. ).

Cilleroe', L S. B. Hansen', C. D. P. Mintage', 1. I. MacTadare", R. C. Slade, S. N. Naha?, C. Orbari',
, Pain'. A. K. Pradban', M. Sherrill' & B. G. Wilson

1 a[x(q, —q, co)] s(q, co) = 1 e—w/kBT— 

Electrical conductivity
Free-Electron X-Ray Laser Measurements of Collisional-Damped
Plasmons in lsochorically Heated Warm Dense Matter
P. Sperling, E. J. Gamboa, H. J. Lee, H. K. Chung, E. Galtier, Y. Omarbakiyeva, H. Reinholz, G. Ropke, U. Zastrau, J.
Hastings, L. B. Fletcher, and S. H. Glenzer
Phys. Rev, Lett 115. 115001 — Published 9 September 2015

w)
a(w) = 

J( 

E(w)
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Coupled Electron-lon Many-Body Proble

Time-dependent (non-relativistic) Schrödinger equation for the many-particle (molecular)
Hamiltonian.
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(Time-Dependent) Density Functional Theory in a Nutshell
Sandia
National
Laboratories

Hard problem

Schrödinger view

v2

[ 2 +

vs (r) =

vs (r)

Properties of atoms,
molecules, and

materials

Formally

equivalent

] Oi (r) = EjOi (r)

, , ( 5  ii,„
vm 

8U 
+ + 
önr ön(r() )

n(r) = Y., O'i< (r)Oi (r)
i

"Easy"
problem

(Kohn-Sham equations)

(Kohn-Sham potential)
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The ABC of DFT (dft.uci.edu/doc/gl.pdf).
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Real-time and Linear Response TDDFT

l . Prepare initial state from a static DFT calculation

[ v2

2 
+ vs (01 Oj (r) ( )

2. Solve the TD Kohn-Sham equations

i clO idt(r) [ V22 + vs (0] oi(r)

vs (r, t) = v(r, t) + v. (r, t) + vx,(r, t) ,-,:-, vr [n(r, t)](r)

Alternatively, use linear response theory

tickle the system .
.
. observe how the
.
. system responds

at a later time

Courtesy of N. Maitra and C. Ullrich (2018).

00
677,(q, t) = dT x(q, —q, T) Vo f (t — T)f

3. Compute observables as a functional of time-dependent density

n(r, t) = >_2 0;) (r, t)Oi (r, t)

13 Background acangi@sandia.gov



Sandia's Implementation •fTDDFT
Sandia
National
Laboratories

Implementation of TDDFT-Ehrenfest MD in VASP
• Andrew D. Baczewski et al., PRL I I 6, 115004 (2016)
• Plane wave basis

• Projector-augmented wave (PAW) formalism

• Crank-Nicolson time integration (unitary)

• Generalized minimal residual method

Scales well on DOE machines
• Typically 100s of cores, a few hours

• No "free" parameters

• takes mass density

• # of electrons

• exchange-correlation functional

GURNIUM

Elk code

Coupled electron-ion equations of motion

t) = {- v (r, (r, t)

Ma a2R
' = —V Ra E[R,, n(r,
Ot2

T
i
m
e
 p
er

 S
te

p 
(s
) 

10000

1000

100

10

1

0.1

Strong Scaling on Sequoia
,

64 atoms, 368 orbitals
64 atoms, 768 orbitals

144 atoms, 1760 orbitals
_256 atoms, 3040 orbitals

•
- •

•
•

256 1024 4096

Number of Cores

16384 65536

acangi@sandia.gov



Stopping Power in Warm Dense Targets

Example: Hydrogen moving
through cold, bulk aluminum in
a channeling trajectory
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Stopping mechanisms
• Nuclear stopping (lattice vibrations)
• Electronic stopping (electronic excitations)

BO MD
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Large body of literature for cold targets
• Empirical approximations (Rutherford,Thomson, Bohr, Bethe)
• Parameter-free atomistic simulations
• Electronic structure coupled to molecular dynamics
• Cold stopping power (Echenique, Correa, Artacho, Schleife)
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Target chamber, National Ignition Facility,
Lawrence Livermore National Laboratories.
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D3He proton sourcelik
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Subject Drivt 441k t

Zylstra et al., Phys. Rev. Lett. I 14, 215002 (2015).
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Stopping Power in Warm Dense Targets
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• Stopping at l 0 g/cc (mass density) and 2 eV (temperature)

• Force vs. projectile distance: Similar across velocities

• Work vs. projectile distance: Spikes represent ions

• Electronic work vs. projectile distance: Slope
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St
op
pi
ng
 P
o
w
e
r
 [
eV
/A
ng
.]
 

70

60

50

40

30

20

10

•

P tc
0 t

/ t

Muze (Hansen + Grabowski)
SCAALP (Faussurier)

• TDDFT (Baczewski)

/
s

0 
o3

•

t 

t

• ti

104 105 106

Energy [eV]

167 1 08 1 09

Projectile at 300 keV

Projectile at 30 MeV

Sandia
National
Laboratories

I 6 Results acangi@sandia.gov



Dynamic Structure Factor
Sandia
National
Laboratories

Probe system with x-ray:

v(r, t) = vo e
2q f (t)

sin(8/2)

= 
Ao

Ao : probe wavelength (2Å)

Record density response:
oc

6n(q, t) = dT x(q, —q, T) vo f (t - T)

Apply dissipation-fluctuation theorem:

6n(q, w)

x(q, —q, w) = vo f (w)
1 a [x(q, —q, w)] S (q, w) _ 1 e —4kB T

PRL 116, 115004 (2016) PHYSICAL REVIEW LETTERS
week ending

18 MARCH 2016

X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition

A. D. Baczewski,l'* L. Shulenburger,2 M. P. Desjarlais,2 S. B. Hansen,2 and R. J. Magyarl
1Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
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Dynamic Structure Factor
Sandia
National
Laboratories

Probe system with x-ray:

v(r, t) = vo e2q rf(t)

= 
sin(8/2)

Ao

Ao : probe wavelength (2Å)

Record density response:
oc

6n(q, t) = dT x(q, —q, T) vo f (t — T)

Apply dissipation-fluctuation theorem:

6n(q, w)
Vq, —141 ch)) = vo f (w)

1 a [x(q, w)]S (q, w) = 1 e_w kB

X-ray Thomson scattering in high energy density plasmas
Siegfried H. Glenzer and Ronald Redmer
Rev. Mod. Phys. 81, 16 2 5 — Published 1 December 2009

PRL 116, 115004 (2016) PHYSICAL REVIEW LETTERS
week ending

18 MARCH 2016

X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition

A. D. Baczewski,l'* L. Shulenburger,2 M. P. Desjarlais,2 S. B. Hansen,2 and R. J. Magyarl
1Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
2Pulsed Power Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
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Copper under ambient conditions
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Frequency [eV]

Sum rule Error Relative error

Experiment -1.50 -0.07 0.04

TDDFT (I) -1.41 -0.15 0.10

TDDFT (II) -1.36 -0.21 0.14
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lsochorically heated Aluminum

100

10-

Aluminum (T=0.5eV, 2.7 g/cc)

- Experiment (SSI85) at 300K

Average-atom (Hansen et al.)

- DFT-MD-KG (Witte et al.)

- TDDFT
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Sum rule Error Relative error

Experiment -1.577 0.007 -0.004

2 DFT-MD-KG -1.568 -0.003 0.002

TDDFT (I I) -1.563 -0.007 0.005
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Capability to predict first-principles transport
properties of HED from TDDFT

• Systematic approach with minimal need for post-processing

• Better scaling in real time than in energy domain

• Nonlinear effects

Support other simulation tools

• Constrain parameters in average-atom models

• Validate DFT-MD Kubo-Greenwood results

• input for resistive magneto-hydrodynamics

Support interpretation of experiments

• Combine TDDFT tools to provide consistent predictions

• Recent experiments at LCLS

• lsochorically heated and shock-compressed materials
(such as Al and Cu)

Collaborators

• Andrew D. Baczewski (Sandia National Laboratories)

• Taisuke Nagayama (Sandia National Laboratories)

• Thomas Gomez (Sandia National Laboratories)

• Stephanie B. Hansen (Sandia National Laboratories)

hanks for your attention! acangi@sandia.gov
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Distribution of microscopic forces in warm dense beryllium
Sandia
National
Laboratories
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Supporting diagnostics at LCLS with TDDFT

1.0
— Sperling, et al., (2015)

O TDDFT, Te = 6 eV
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Energy [keV]

Free-Electron X-Ray Laser Measurements of Collisional-Damped
Plasmons in lsochorically Heated Warm Dense Matter
P. Sperling, E. J. Gamboa, H. J. Lee, H. K. Chung, E. Gelber, Y. Ornarbakiyeva, H. Reinholz, G. ROpke, U. Zastrau, J.
Hastings, L. B. Fletcher, and S. H. Glenzer
Phys. Rev. Lett. tI5, 115001— Published 9 Septernber 2015

1.0
— Witte, et al., (2017)

TDDFT, Te = 0.3 eV
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Warm Dense Matter Demonstrating Non-Drude Conductivity from
Observations of Nonlinear Plasmon Damping
B. B. L. Witte, L. B. Fletcher, E. Galtier, E. Garnboa, H. J. Lee, U. Zastrau, R. Redrner, S. H. Glenzer, and P. Sperling
Phys. Rev. Lett. 118, 225001 — Published 31 May 2017

8.01
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Definitions ofTransport Properties
Sandia
National
Laboratories

x(w) = X1 (CA)) + i X2 (CA))

Xi (w) = 1PrCICA)/X2P/ ) 
7F C4) CA.)

/
—— oc

1
P dw

,

 

cc 
/ Xi 
( 
wi ) f 

co7F W I — CA.)

6 (w) = 1+47i °:
w

x2(w) =

2
a(w) = c.t) [\ EP)]

1 dA(t) 
E(t) 

— c dt

J(t) = Thz dr > CY; (r)rij(t), (r)
3

J (w) = n(w) E(w)

27r   
gic(W) = 3wQ 

.
[f(E2,,k) f (Ei,k)]

(0.1,1(V Cbi,k) 26(Ei,k 6i,k

25 Supplement acangi@sandia.gov


