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ABSTRACT

The detection, location, and identification of suspected underground nuclear explosions (UNEs) are global secu-
rity priorities. Vegetation disturbances may provide complementary signatures that can confirm or build on the
observables produced by prompt sensing techniques such as seismic or radionuclide monitoring networks. For
instance, the emergence of non-native species in an area may be indicative of anthropogenic activity or changes
in vegetation health may reflect changes in the water table resulting from an underground explosion. Previ-
ously, we have collected high spatial resolution (10 cm) hyperspectral data from an unmanned aerial system at a
legacy underground nuclear explosion test site and its surrounds. These data consist of visible and near-infrared
wavebands over 4.3 km? of high desert terrain along with high spatial resolution (2.5 cm) RGB context imagery.
In this work, we employ various spectral detection and classification algorithms to identify and map vegetative
species in an area of interest containing the legacy test site. A frequentist framework for fusing multiple spectral
detections across various reference spectra captured at different times and sampled from multiple locations is
employed. The spatial distribution of vegetation species is compared to the location of the underground nuclear
explosion. We find a difference in species abundance within a 130 m radius of the center of the test site.

Keywords: hyperspectral imagery, unmanned aerial systems, remote sensing, support vector machine, adaptive
cosine estimator

1. INTRODUCTION

The detection, location, and characterization of suspected underground nuclear explosions (UNEs) are global
security priorities. Current techniques utilized by the international nuclear explosion monitoring community rely
on sensors recording prompt data, such as seismic or radionuclide monitoring networks.! While these prompt
techniques can generally detect and locate suspected underground nuclear tests, they cannot leverage additional
event signatures manifested through non-prompt observables. These non-prompt observables are critical for
refining event location and characterization. For example, post-event surface fractures can be important access
points for in-situ verification techniques and cultural artifacts such as diagnostic and instrument cabling can refine
event locations to specific areas of interest. In this work, we employ machine learning and statistical classification
algorithms against previously collected hyperspectral imagery? to identify and map vegetative species in an area
containing a legacy underground nuclear test site. We find that spatial species distributions clearly demarcate
the underground nuclear tests in our area of interest.

Vegetation around a suspected UNE provides a unique carrier for a number of potential signatures. Short and
long term changes to the subsurface and water table may manifest as changes in vegetative health, water content,
or growth levels. The presence of non-native or pioneer stage species® can reveal areas of anthropogenic activity
long after specific artifacts or thermal signatures have decayed or been sanitized. Vegetation can capture and hold
on to surface and subsurface particulates for periods of days to decades. Additionally, as a surface observable
connected to the subsurface, vegetation represents an appealing target for UNE signature exploitation as it

can be measured, mapped, and exploited using remote sensing techniques. To this end, optical remote sensing
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is particularly attractive as it is unobtrusive, can search large areas, and can resolve surface features such as
vegetation in fine detail. Hyperspectral imaging (HSI) provides a powerful signature for characterizing vegetative
signatures.

HSI is commonly used for remote material identification. HSI sensors collect optical intensity measurements
for hundreds of contiguous bands over a spectral range commonly including the visible and near infrared (VNIR)
wavebands. Illumination models are used to convert the intensity measurements of each pixel to reflectance
profiles which are indicative of material type. In contrast to multispectral data, HSI bands are not optimized for
a specific application or set of materials. This allows HSI to be used to identify a broader range of materials and
applications. Additionally, HSI data allow for differentiation of materials that have similar spectral signatures
such as healthy and diseased crops.* HSI has been used in the past for identification of surface mineralogy,®
nondestructive food analysis,® medical applications,” and vegetation mapping.®

This paper overviews HSI data collection and signature mapping in Section 2, the methods we employ for
vegetation mapping in Section 3, our results against legacy UNE test sites in Section 4, and concludes in Section 5.

2. BACKGROUND

Previously, we have collected high spatial resolution (10 cm ground sample distance) hyperspectral imagery
from an unmanned aerial system (UAS) at a legacy underground nuclear explosion test site and its surrounds.?
These data consist of VNIR wavebands over 4.3 km? of high desert terrain at the Nevada National Security Site
(NNSS). The NNSS is a declared legacy nuclear explosion test range in southern Nevada, and is the site of over
800 underground nuclear tests in a variety of geologies (e.g. tuffs, alluvium, and granite) and emplacements
(tunnels and boreholes).” Although the United States has placed a moratorium on UNE testing since 1992,
the NNSS remains a laboratory for measuring and characterizing non-prompt and persistent signatures and
observables. An overview of the HSI data collection is shown in Fig. 1.

The area of interest is composed of Pinyon-Juniper woodland, dominated by stands of evergreen junipers
and pinyon pines and brush composed of rabbitbrush, sagebrush, and saltbrush. The scene is also punctuated
by various species of wild flowers and grasses. Photos taken from on the ground highlighting the vegetation are
shown in Fig. 2. Growth ring counting indicates that the climax community Pinyon-Juniper stands are in excess
of 50 years of age. The UNE tests in the area of interest (AOI) were conducted from 1987-1991, meaning that
much of the climax vegetation has been around since before the tests. Leading up to the tests, large areas around
the boreholes were cleared of vegetation for equipment, vehicles, etc. This is reflected by primary and secondary
stage succession vegetative communities that have not fully recovered to the climax stage even 30 years post
test.

Optical remote sensing for vegetation mapping has broad applications in agriculture and ecology. Numerous
airborne and space based multi and hyperspectral systems, such as Landsat, QuickBird, or AVIRIS,® have been
applied to vegetative mapping applications. However, the long standoff distance for these systems results in
course spatial resolution, ranging from meters to kilometers ground sample distance. Recently, unmanned aerial
systems (UAS) have emerged as a viable platform for optical remote sensing. UAS can fly much lower than
traditional systems, thereby providing very high spatial resolution measurements. The high spatial resolution
improves the ability to spatially resolve targets, but it also reduces the need to use mixture models because there
are fewer types of materials in each pixel. This high resolution along with the low cost of operation over small
areas'? makes UAS a prime platform for precision agriculture applications.'!

Workflows for vegetation mapping from spectral remote sensing often make use of various vegetation indices.'?

These indices, typically differences or ratios between spectral bands, represent scores that are correlated with
properties of the vegetation. The normalized difference vegetation index (NDVI) is the normalized difference
between reflectance in the red and near infrared wavelengths'® and is perhaps the most ubiquitous index in prac-
tice. NDVI is a well established method for estimating the vegetation ground cover from multi-spectral satellite
data because chlorophyll is highly absorbing in the red waveband and the internal structures of leaves makes
vegetation highly reflective in the near infrared waveband.'* !> Given the high spatial resolution of our collected
HSI, NDVI is a strong indicator of the presence of vegetation on a per-pixel basis.!! While NDVI and other
indices are proven tools for estimating properties such as biomass or ground coverage, they are severly lacking
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Figure 1: Pseudo-color overview of the VNIR HSI collected at the NNSS. The collection spans approximately
4.3 km?. Grids represent 1 km UTM zone 11N coordinates.

in discriminating power for discerning different vegetative species. Unsupervised and supervised classification
techniques, such as k-means or support vector machines (SVM), can be employed for the species classification
problem. Unsupervised techniques use clustering to separate the pixels in the scene into a predetermined number
of classes. Supervised techniques require training data for each class.

3. METHOD

We employ two competing methodologies for mapping vegetative species in our VNIR, HSI scene: Adaptive Cosine
Estimation (ACE) and support vector machines (SVM). Matched filtering approaches such as ACE are highly
flexible and are common in hyperspectral data exploitation. While much less flexible, supervised classification
approaches such as SVM bring to bear much greater discriminative power. In this section, we will overview both
methodologies.

The ACE workflow makes use of ground-based reference spectra captured using a handheld ASD point
spectrometer to perform detections within the HSI scene. FEach pixel’s reflectance in the scene is compared to
the reference library to compute detections, and detections from the same species are aggregated into a single
score. Pixels are assigned the species with the highest score. The workflow proceeds as follows. First, scene
background statistics are computed. Calculating a covariance matrix for the entire HSI scene is intractable;
rather, a region around the Barnwell UNE site was selected to estimate background statistics. To prevent
vegetation contamination of the background estimate (which can degrade detector performance'®), all pixels
with an NDVI greater than 0.25 were excluded from the background statistics. Next the background estimate
is used to demean and whiten (via principal component analysis rotation) the scene. The library of reference
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Figure 2: Photos taken from on the ground within the AOI highlighting the diversity of topology and vegetation.

spectra have much higher spectral resolution than the HSI scene. Reference spectra are smoothed by convolving
a Gaussian with full width-half max (FWHM) of 6 nm (the same FWHM of the imager used to collect the
VNIR HSI) and downsampled to the imager resolution. The background demean and whitening transform is
then applied to the reference spectra. Next the ACE score for each pixel and reference spectra combination are
computed. The reference library consists of multiple measurements of each species. The ACE scores are grouped
by species, and are fused into a single probability using the Probabilistic Fusion framework.!” Final species
determinations are made by selecting the highest probability species from the fused scores. This workflow is
shown in Fig. 3.
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Figure 3: Overview of the detection algorithm workflow

Support vector machines (SVMs) are a type of machine learning model used to classify high dimensional data



such as HSL.'®'¥ Our SVM workflow requires defining all possible classes and then providing in-scene examples
of each class. The workflow proceeds as follows. First, possible classes are defined. Training an SVM to classify
individual species is not feasible given the lack of labeled training data. For more tractable labeling, species
are grouped into three different classes: two climax populations (old trees and old brush) that would exist on
the site in absence of anthropogenic activity and a succession population (new growth) which is regrowing on
the regions cleared of vegetation in support of the UNE tests. The old trees class consists of Pinus monophylla,
commonly single-leaf pinyon, and Juniperus osteosperma, commonly Utah juniper. The old brush class consists
of Artemisia nova, commonly black sagebrush, and unidentified scrub. The new growth class is dominated by
brush that has grown in since the ground was cleared. This class contains Chrysothamnus viscidiflorus, commonly
yellow rabbitbrush, Salsola tragus, commonly Russian thistle, and unidentified grasses. These class groupings
preserve the capability to distinguish long standing climax populations (old trees and brush) for new succession
and invasive growth (new growth) resulting from anthropogenic activities surround the UNE test. Next, training
data is labeled as belonging to one of the three classes. For expedient per-pixel hand labeling, a region dominated
predominantly by each class is selected and an NDVT threshold of 0.25 is applied to create a vegetation mask.
Binary morphological opening and eroding are applied to each mask to remove features that are too large or
small to belong to the predominant class for the region. Pixels remaining in each mask are labeled based on the
region’s predominant class and are combined to construct the labeled training dataset. In each training region,
an area is selected to be a validation set. The pixels from the validation set are removed from the training set
and are used as a test case for tuning hyperparameters. These labeled training regions are shown in Fig. 4.
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Figure 4: Regions used for selecting and labeling training data as input to the SVM workflow.

With the training data for each class assigned, the training data is next down-sampled and preprocessed for
input to an SVM. The labeled training data contains over 50,000 pixels per class, far more than is necessary for
training an SVM. To reduce computational cost, the training data is randomly down-sampled to 5,000 pixels
per class. A standardizing transform (constructed from the training data) is applied to all spectra prior to SVM
input. First each spectra is smoothed by convolving with a Gaussian function to reduce noise. The smoothed
spectra are trimmed to the wavelength range of 440 nm to 900 nm to eliminate noisy bands in regions of low
detector response or poor signal. Each spectral band of the data is standardized by subtracting off the mean and
dividing by the variance of the training data in that band. Next a principal component analysis (PCA) transform
is fit to the training data and is used to reduce input dimensionality.?? The standardized training data is used to
fit an SVM, and the entirety of the dataset is passed through the now-fitted classifier. After HSI classification, the
spatial morphology in the scene is exploited with segmentation and voting to produce consistent classifications
for multi-pixel individual plants. To segment the image, the HSI data is converted to red-green-blue (RGB)
by selecting the bands corresponding to wavelengths 669nm, 540nm, and 458nm respectively. The pixels in
the resulting RGB image corresponding to NDVI less than 0.25 are set to zero to select only the vegetation.
Felzenszwalb segmentation is applied to the RGB vegetation, creating an over-segmented image.?! Adjacent



segments without significant edges between them are hierarchically merged. Each segment is assumed to be a
single species, therefore the entire segment is assigned to the class of which the majority of its pixels belong.
Fig. 5 shows the workflow for creating an SVM to classify the vegetation around the UNE test sites.
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Figure 5: Overview of the SVM workflow

A hyperparameter sweep is used to determine the best SVM workflow parameters to classify the HSI data.
The workflow hyperparameters are randomly varied and resulting performance is measured based on the true
positive fraction of each class in the validation regions. The parameters swept over are FWHM of the smoothing
Gaussian, number of components retained in the PCA transform, SVM kernel (linear, polynomial, or radial basis
function), and SVM penalty. Additionally, each SVM kernel introduces a unique set of parameters that are swept
over:

e Polynomial: kernel weighting ~, offset coeflicient, and degree

e Radial Basis Function: kernel width

The best performance found uses polynomial kernel, a cost parameter of 10, a kernel coefficient of 0.1, a degree
of 1, an offset of 0, a smoothing FWHM of 4 nm, and 30 PCA components. It should be noted that a polynomial
kernel with the degree of 1 and the offset of 0 is equivalent to a linear kernel with the additional weighting
introduced by 7. The linear kernel alone produces worse performance.

4. RESULT'S

The ACE workflow is ineffective at classifying vegetative species. While the workflow strongly detects vegetation
pixels (detection scores greater than 0.9), the detections for Pinyon are typically stronger than for all other species,
even at the specific physical locations where reference spectra were measured. The classifications produced for
Rabbitbrush and Pinyon are shown in Fig. 6. The majority of the Rabbitbrush classifications produced by the
ACE workflow are in shaded areas where the illumination model to convert radiance to reflectance is suspect.

The high detection for all vegetation but poor discrimination performance between species indicates that the
ACE workflow is emphasizing the strong red edge feature of vegetation spectra but missing the subtler between-
species differences. We hypothesize that modification to data preprocessing could improve species differentiation.
By disregarding all vegetation in estimating background statistics, the whitening transform strongly amplifies
generic vegetation spectral features. Modifying the background removal process to remove the mean red edge
profile and spectral bands that have minimal between species variation could decrease the emphasis of the red
edge in the detection score. Additionally, more reference spectra samples for each species could improve the
empirical distribution fits that are part of the probabilistic fusion process.

Classification results from the entirety of the HSI dataset passed through the SVM workflow are shown in
Fig. 7. Larger vegetation is classified as trees, smaller vegetation in the uncleared areas is classified as old brush,
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Figure 6: Detected species using the ACE workflow. Plotted are the detection scores for (a) Rabbitbrush (b)
Pinyon and (¢) comparison between Rabbitbrush and Pinyon highlighting the dominance of Pinyon detections
throughout the scene.

and vegetation in the UNE test areas are classified as new growth. Some errant misclassifications exist, but there
is strong spatial consistency throughout the scene in classifications and dominant vegetation in local regions are
classified correctly. There are evident correlations and differences in vegetative type around the UNE test sites
in the AOI, representing a strong remote-detectable signature.

While providing a powerful discriminant, classification approaches such as the SVM workflow have some
shortcomings. They require sufficient in-scene labeled data with which to train models. Furthermore, they
require specification of all possible classes up front: in this case old trees, old brush, and new growth. This is
highlighted by the “old trees” along the western edge of the Barnwell test (see Fig. 8); in reality the trees are
actually grass. Grass is not explicitly defined in any of the classes, so the SVM assigns the grass to the perceived
most similar spectral class (in this case “old trees”).

5. CONCLUSIONS

In this work we have demonstrated that there are remotely observable vegetation differences around UNE test
site locations which can be detected and mapped using hyperspectral imaging. We showed two methodologies
for classifying plant species with VNIR, HSI. The ACE detection workflow was effective at detecting vegetation,
but could not differentiate species type. It may be possible to improve this workflow via enhancements to
the preprocessing stages. The SVM supervised machine learning workflow effectively differentiated new growth
resulting from anthropogenic activity from old growth surrounding the UNE tests in the area of interest. Changes
in vegetation speciation provide non-prompt, long duration observables decades after the tests. These non-prompt
observables can be used alongside prompt techniques to improve and refine suspected UNE event locations and
characterizations.
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Figure 7: Vegetation classifications from the SVM workflow across the entirety of the HSI scene. New growth
presents strong spatial correlation with UNE test sites in the scene.
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Figure 8: There were classification errors with vegetation not included in the training classes. Grass in (a) and
(b) were classified as trees.
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