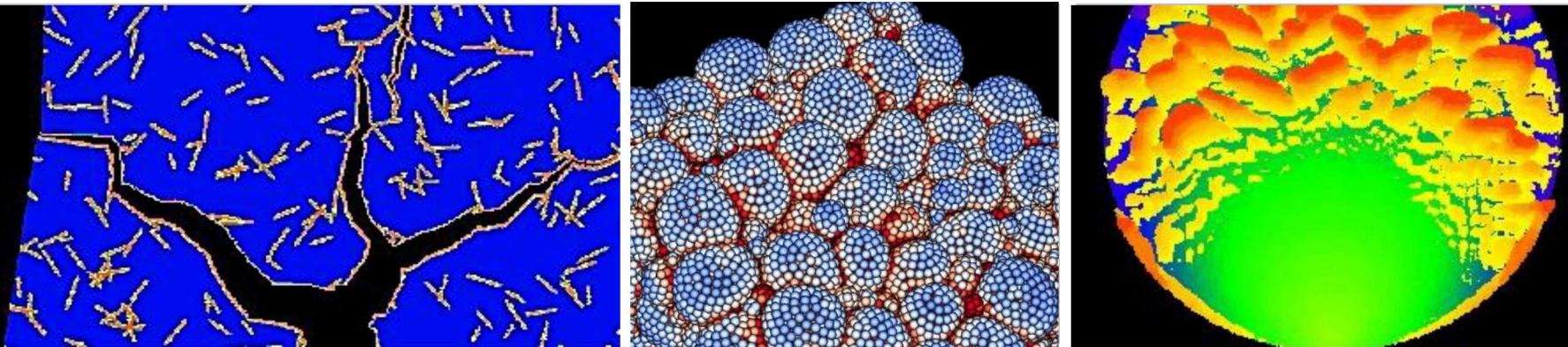


Exceptional service in the national interest



Peridynamic analysis of material failure

Stewart Silling
Sandia National Laboratories
Albuquerque, New Mexico

TMS Conference, San Antonio, TX, March 14, 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

- Peridynamic theory summary
- Some examples of material failure that peridynamics may be good at:
 - Dynamic fracture and complex crack trajectories.
 - Interactions between multiple distributed defects.
 - Direction-dependent failure modes in materials.
 - Accumulated damage.

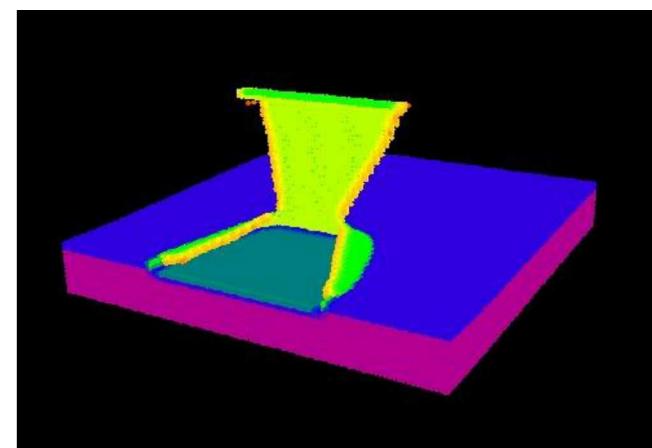
Gaps in classical continuum mechanics

- Local equilibrium equation and material model:

$$\nabla \cdot \sigma + b = 0, \quad \sigma = \hat{\sigma}(F), \quad F = \frac{\partial y}{\partial x},$$

$y(x)$ =deformation map, F =deformation gradient tensor, σ =stress tensor, b =external force.

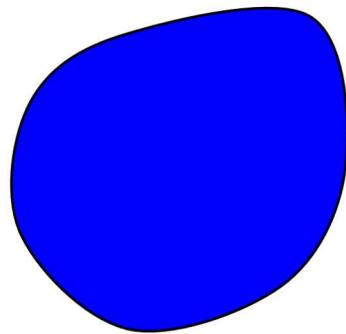
- Requires deformation to be twice differentiable.
- Doesn't apply on growing cracks.
- Can't include nanoscale long-range forces.



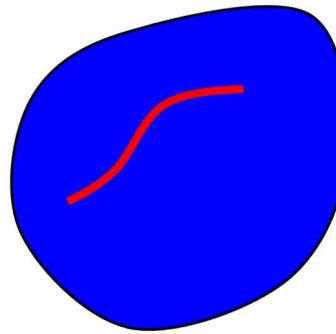
We don't have to look far to see the theory's limitations:
Humble Scotch® tape

Peridynamics: * What it is

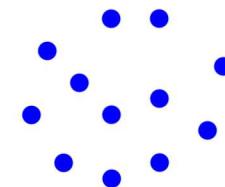
- It's an extension of continuum mechanics to media with cracks and long-range forces.
- It unifies the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect



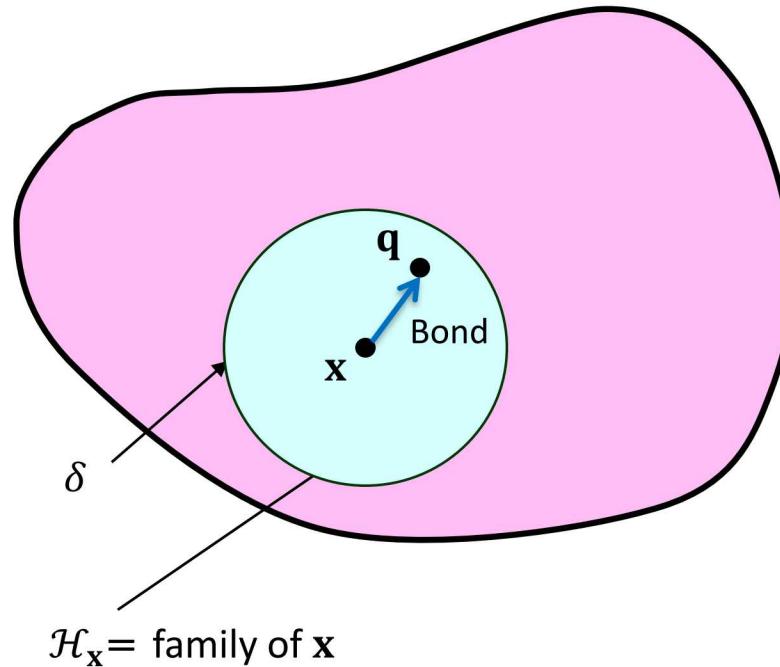
Discrete particles

- Our goals
 - Nucleate cracks and seamlessly transition to growth.
 - Model complex fracture patterns.
 - Communicate across length scales.

* Peri (near) + dyn (force)

Peridynamics concepts: Horizon and family

- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .

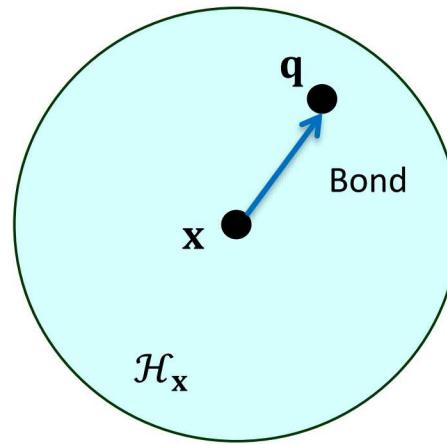
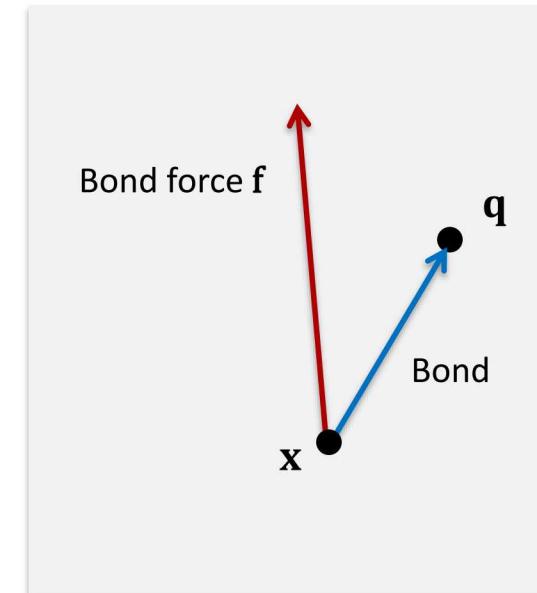


- SS, *J. Mechanics and Physics of Solids* (2000)
- SS & Lehoucq, *Advances in Applied Mechanics* (2010)

Peridynamics concepts: Equilibrium equation

- Momentum balance sums up nonlocal interactions through bond forces $f(q, x)$.
- Similar to molecular dynamics.
- Bond forces come from the material model.

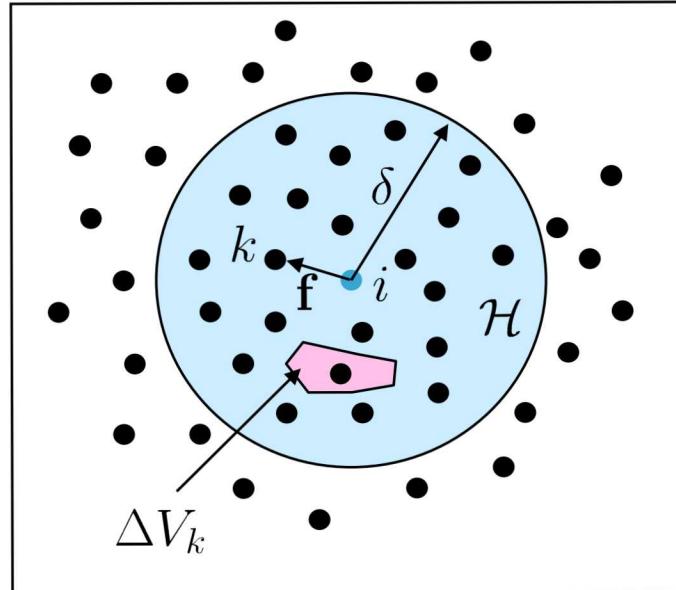
$$\int_{\mathcal{H}_x} f(q, x) + b(x) = 0$$



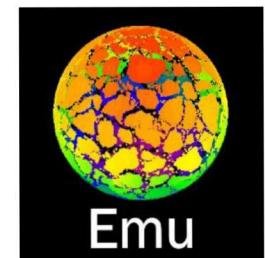
Emu numerical method

- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \, dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t) \quad \longrightarrow \quad \rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k, \mathbf{x}_i, t) \, \Delta V_k + \mathbf{b}_i^n$$



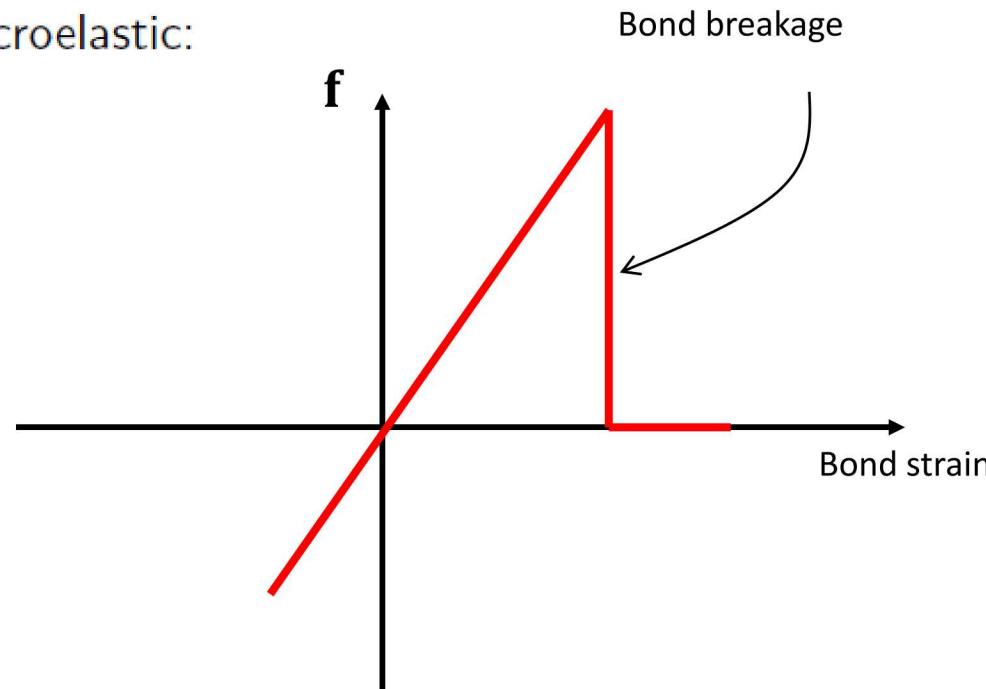
- SS & Askari, *Computers & Structures* (2005)
- Tian & Du, *SIAM Journal on Numerical Analysis* (2014)



Material model example:

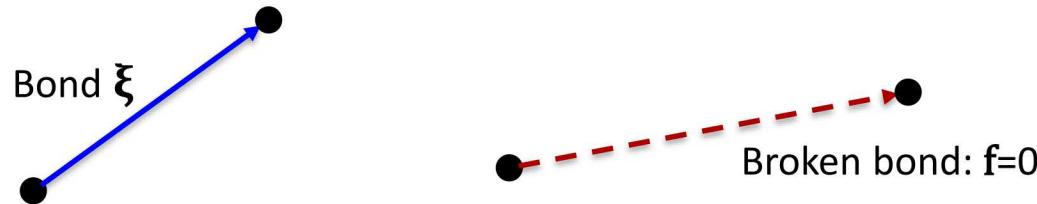
Brittle microelastic

- A material in which each bond responds independently of all others is called *bond-based*.
- Example: Microelastic:



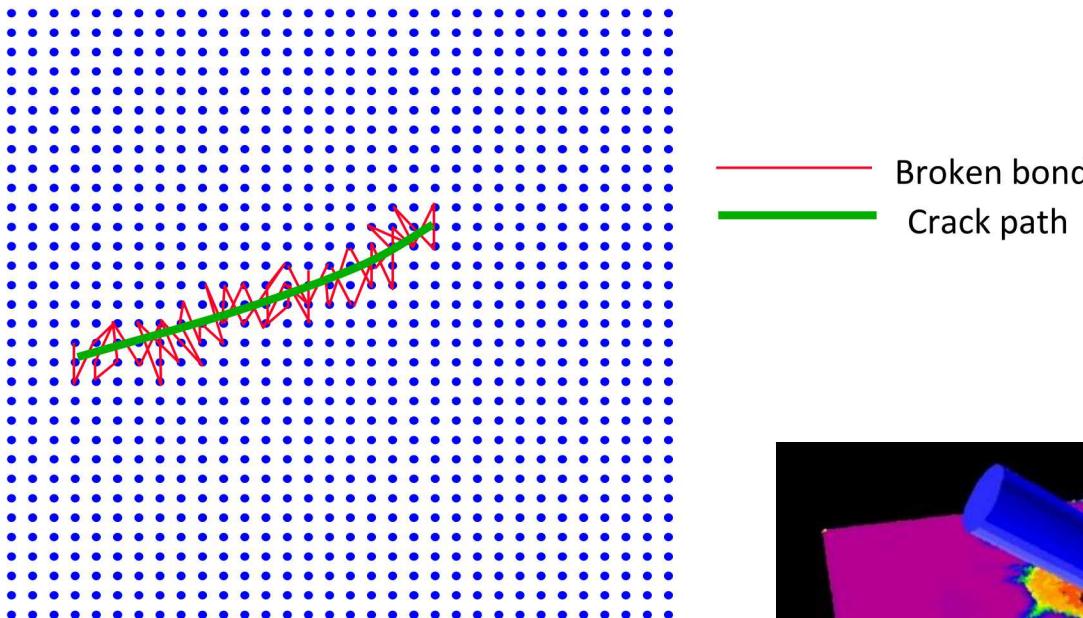
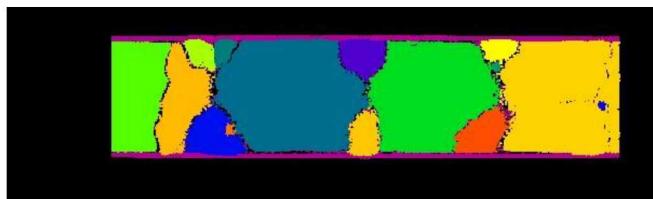
Bond damage criteria

- Damage is usually treated by *bond breakage*.
- When some damage criterion is met, a bond no longer sustains tensile load. Examples:
- $|f(q, x)| > f_0$ where f_0 is a critical bond force density.
- $|u(q) - u(x)| > e_0$ where e_0 is a critical bond extension.
- Bond failure due to cyclic extension (fatigue).
- Continuum damage mechanics (nonlocal version).
- Phase field? (conjecture)

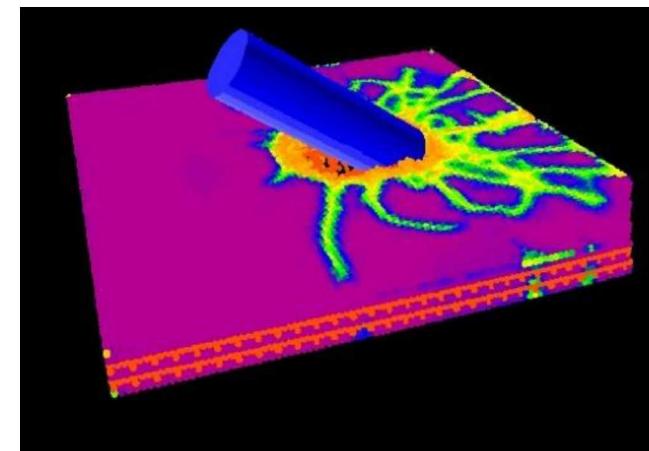


Discontinuities are treated within the basic field equations

- When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

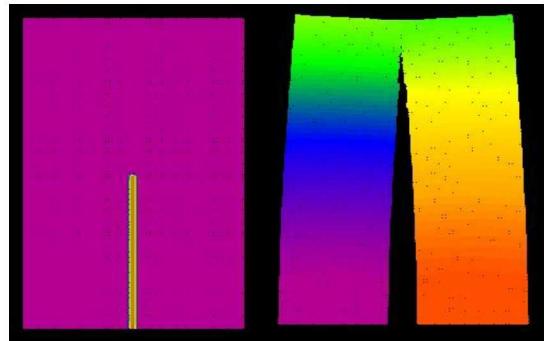
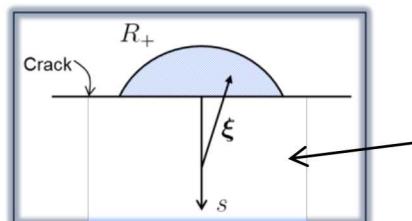


Cracking in a composite lamina



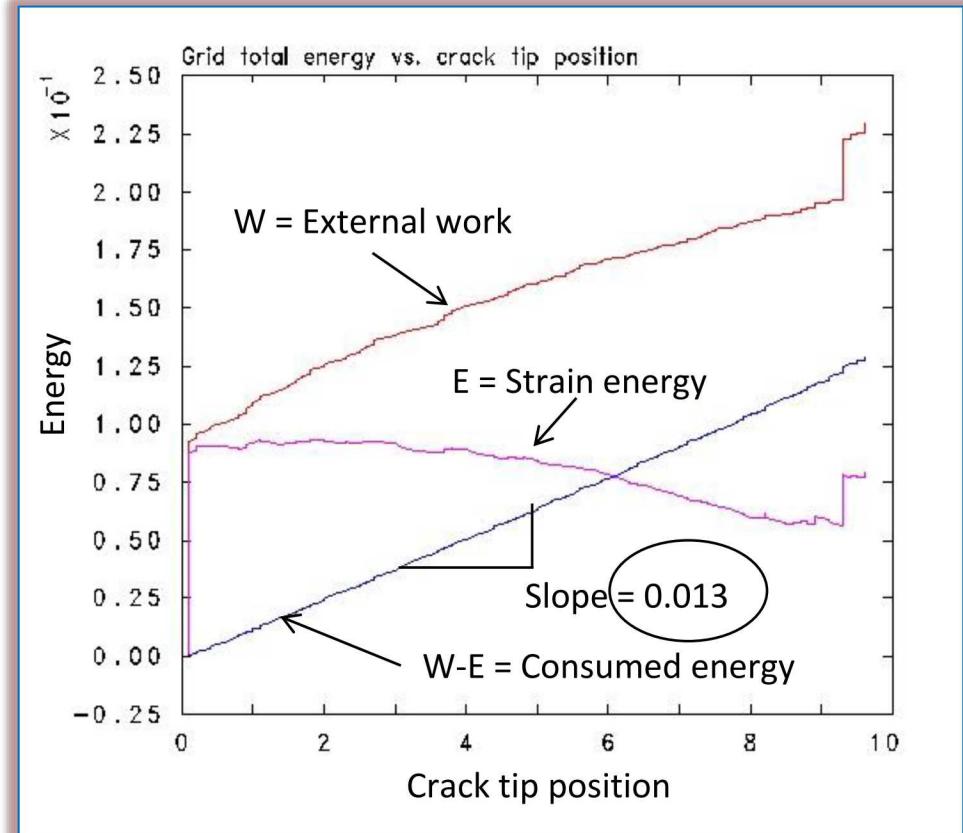
Impact against reinforced concrete

Verification of the energy release rate



From bond properties, energy release rate should be

$$G = 0.013$$



- This confirms that the energy consumed per unit crack growth area equals the expected value from bond breakage properties.

Cracks nucleate due to a material instability

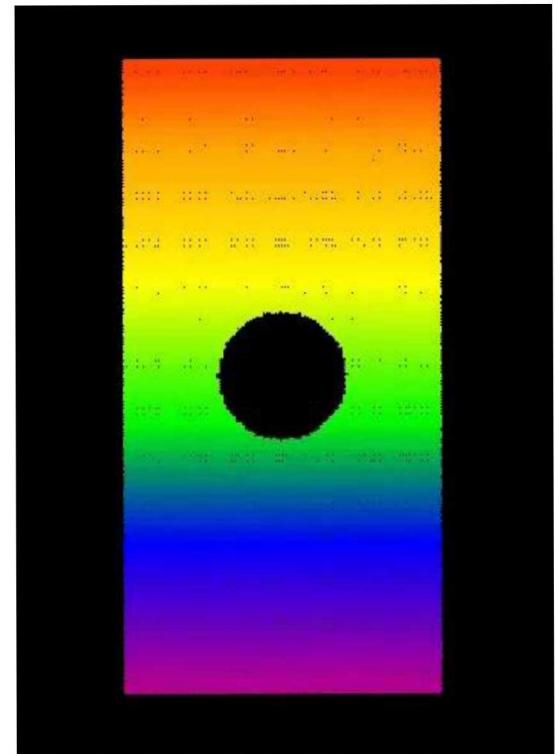
- Suppose the bond force density is given by

$$f(q, x) = F(\eta, \xi)$$

where $\xi = q - x$, $\eta = u(q) - u(x)$.

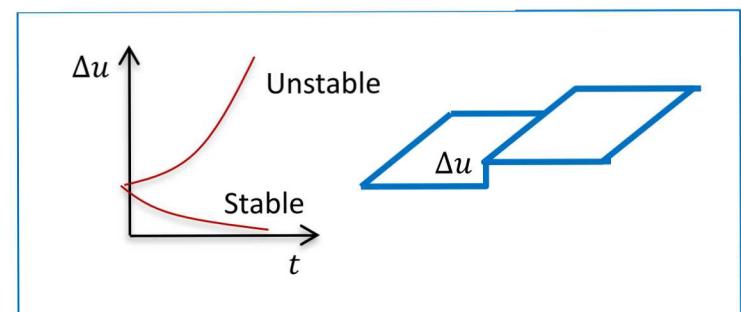
- Condition for growth of a jump perturbation:

$$\det \int_{\mathcal{H}_x} \frac{\partial F}{\partial \eta} dV_\xi < 0$$

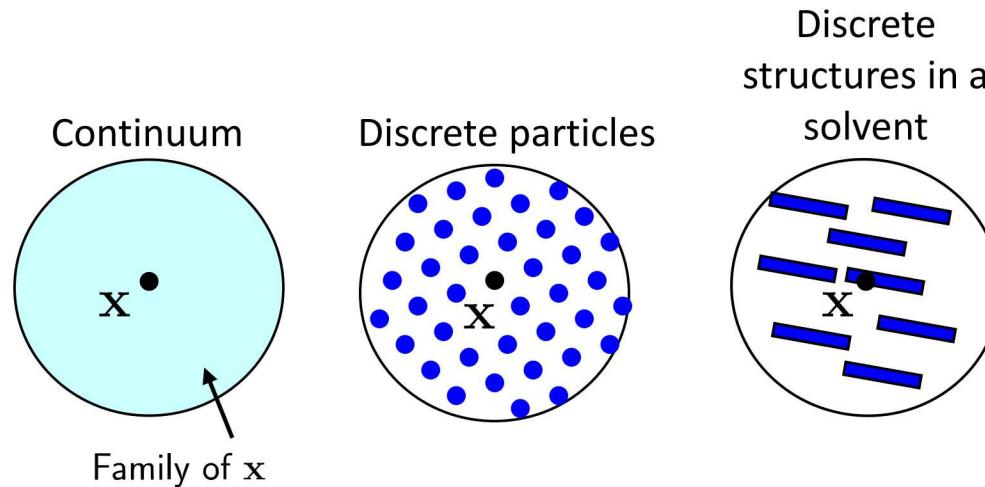


- Related to the convexity of the elastic energy density function for bonds.

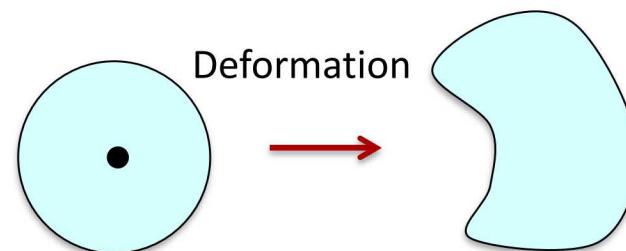
- SS, Weckner, Askari, & Bobaru, *Int. J. Fracture* (2010)
- Lipton, *J. Elast.* (2014)
- Lipton, *J. Elast.* (2015)



State-based concept of strain energy density at a point

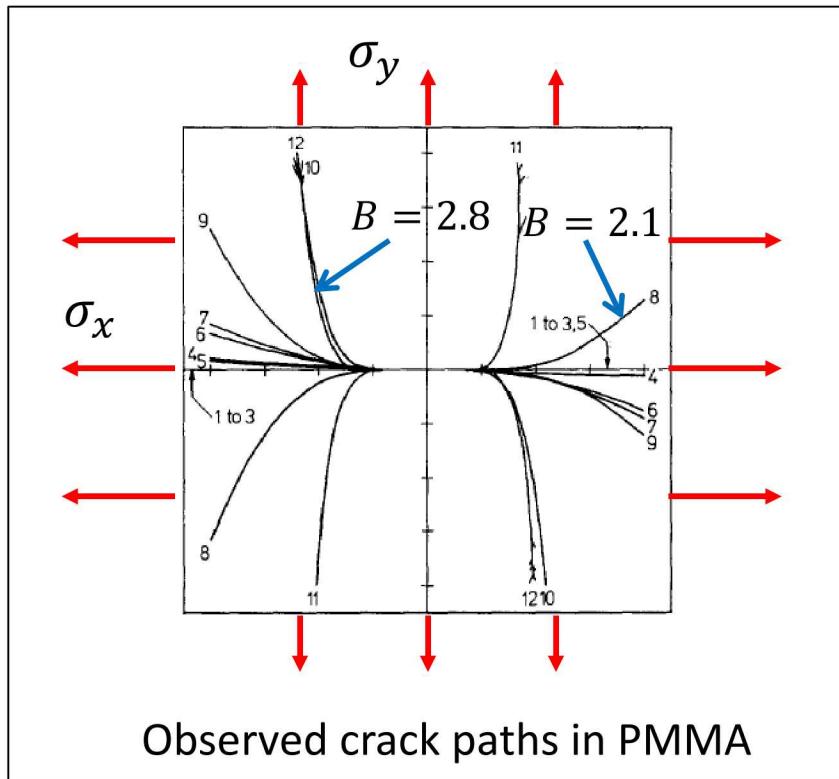


- The strain energy density $W(\mathbf{x})$ is determined by the deformation of the entire family of \mathbf{x} .
- How to describe this dependence? **States:** Nonlocal operators similar to second order tensors.

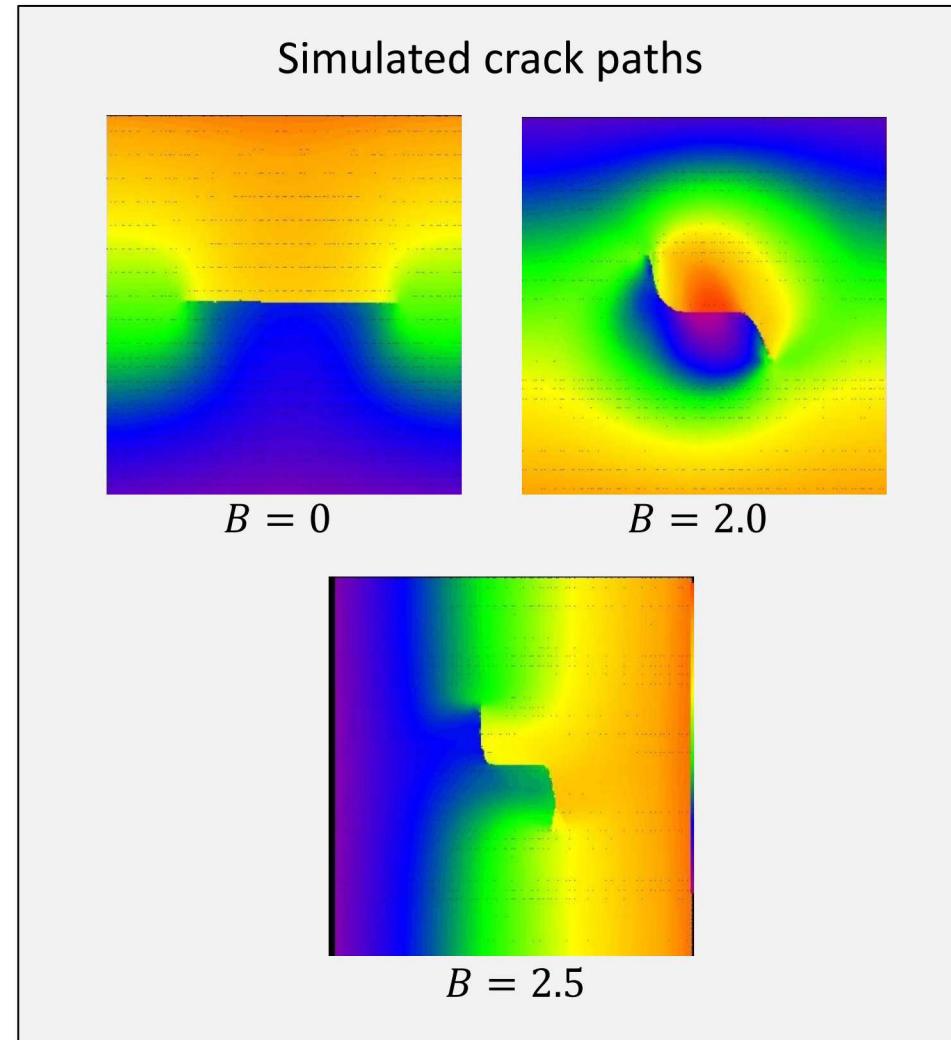


Crack stability and mode transition

- Biaxial loading makes a crack turn.
- Center defect can grow in an S-shape.
- Biaxiality: $B = \sigma_x/\sigma_y$.

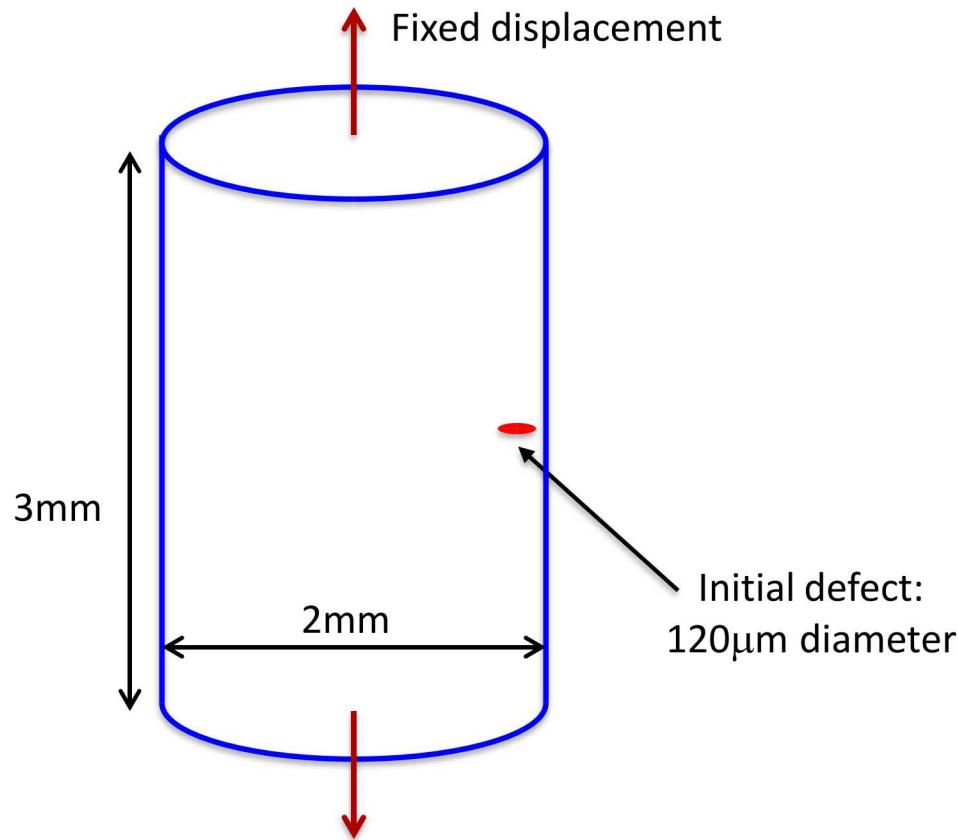


Leevers, Radon, & Culver Jmps (1976)



Failure of a glass rod in tension

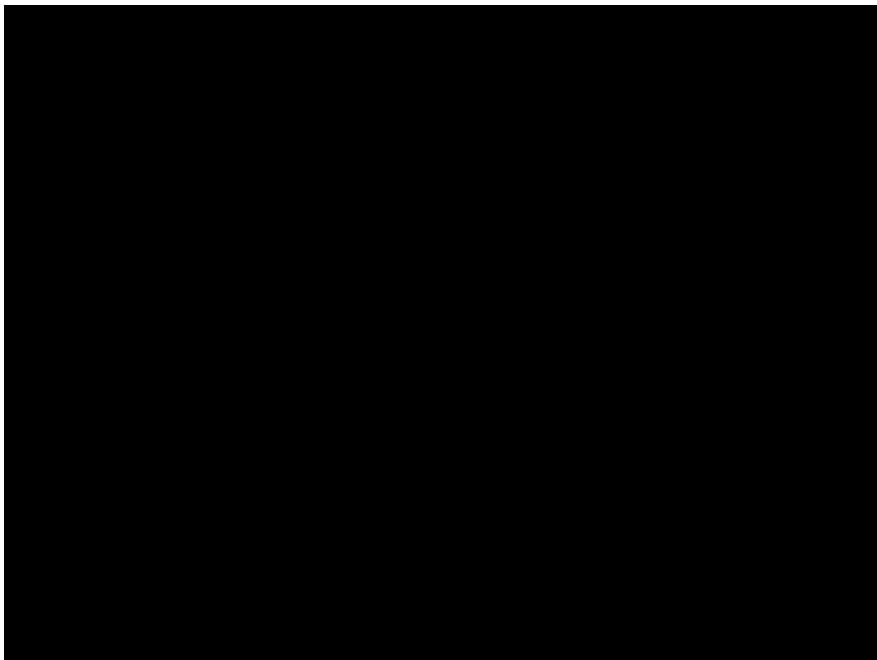
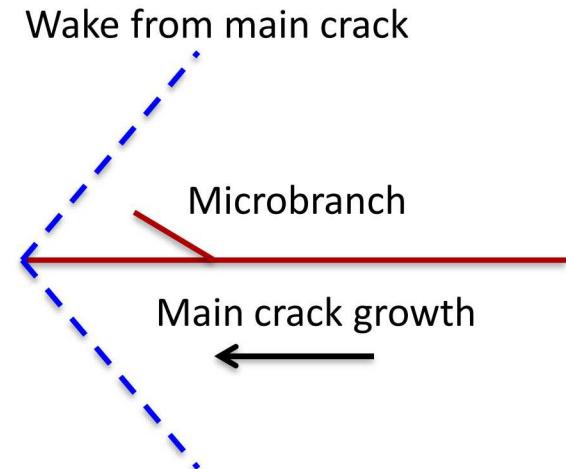
- A classical test problem for fractography.
- We will try to reproduce key fractographic features.
- Multiscale approach allows us to make the horizon \ll geometric length scales.



$$\begin{aligned}
 \rho &= 3000 \text{ kg/m}^3 \\
 E &= 70.5 \text{ GPa} \\
 \nu &= 0.25 \\
 G_{Ic} &= 7.0 \text{ J/m}^2 \\
 \delta &= 25\mu\text{m}
 \end{aligned}$$

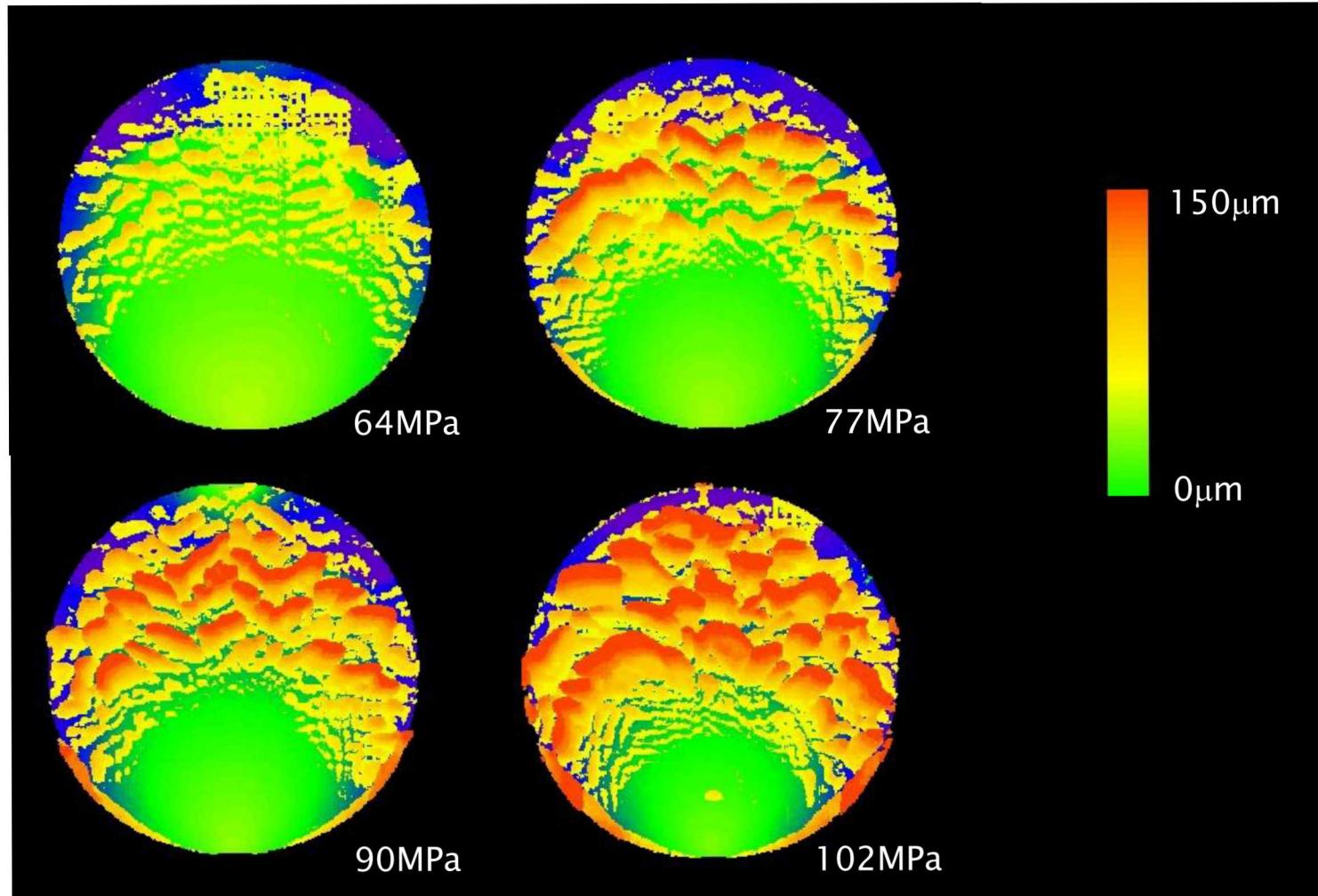
Failure of a glass rod in tension (movie)

Evolution of surface roughness (movie)



- Rough features branch off from the main crack.
- Each one grows slower than the main crack and eventually dies.

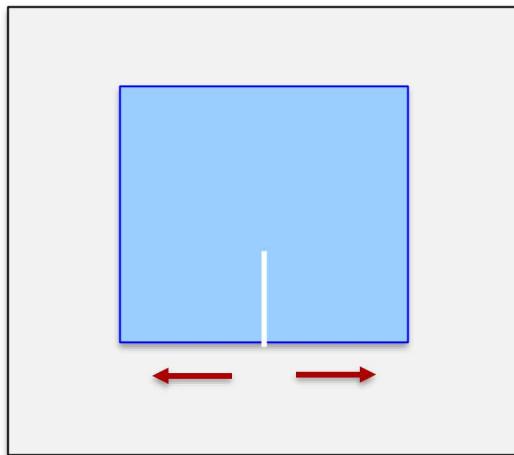
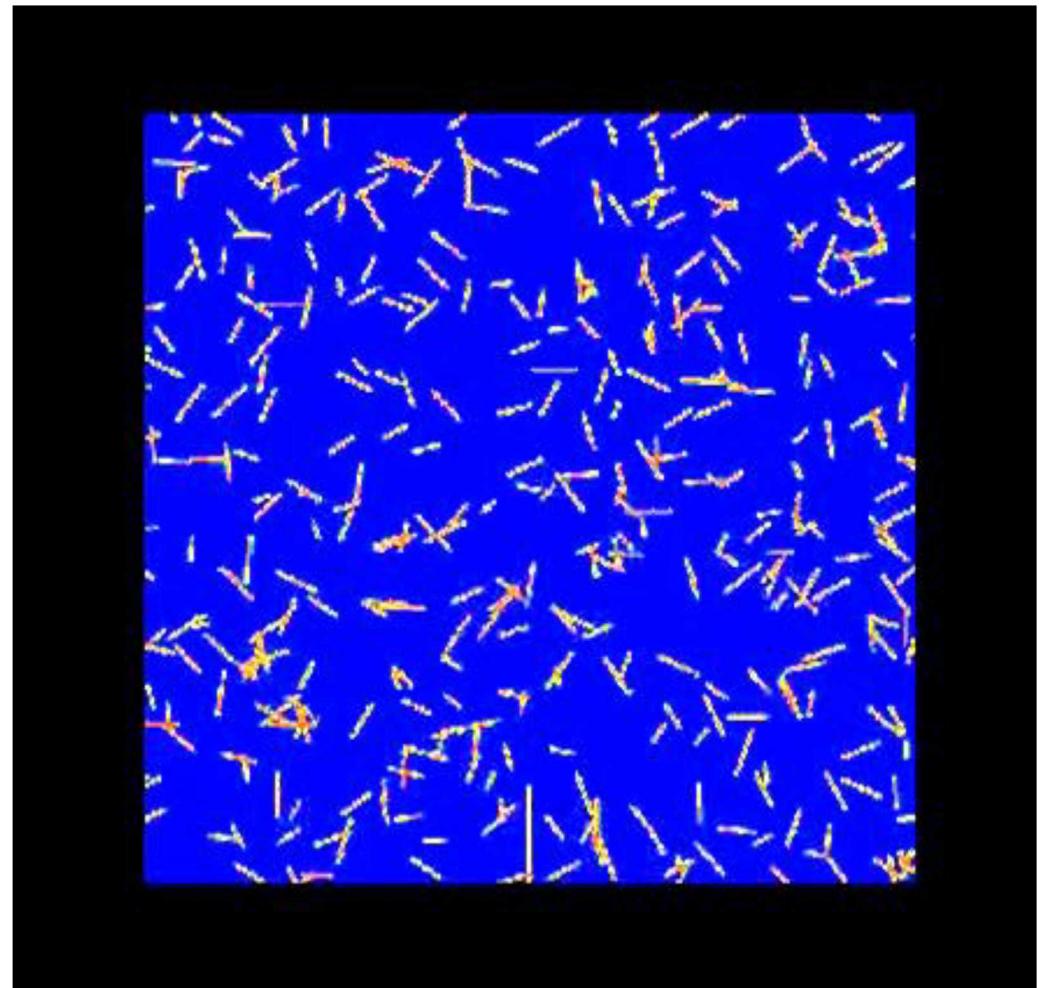
Crack surface for four values of initial stress: mirror-mist-hackle



Colors show elevation of the fracture surface above the initial defect position.

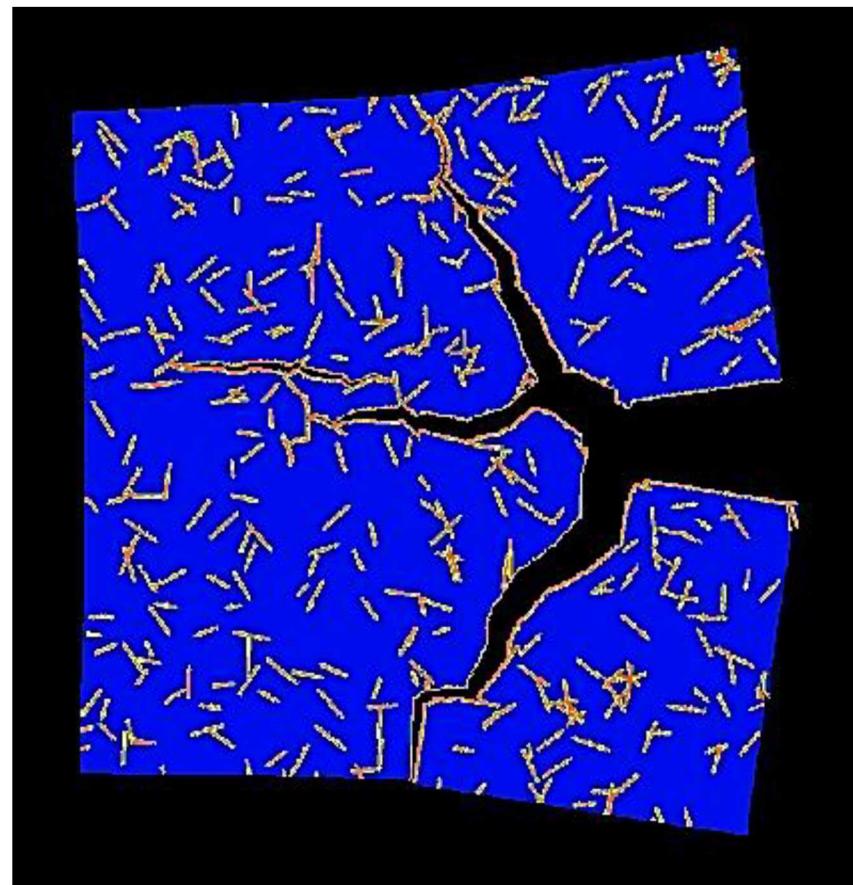
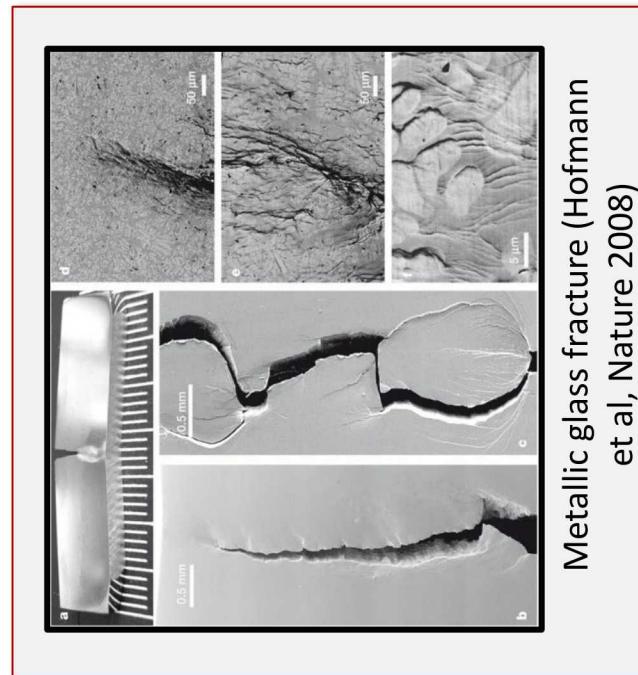
Fracture in a brittle plate with a lot of defects

VIDEO



Fracture in a brittle plate with a lot of defects

- How do defects join up to form a macroscopic crack?



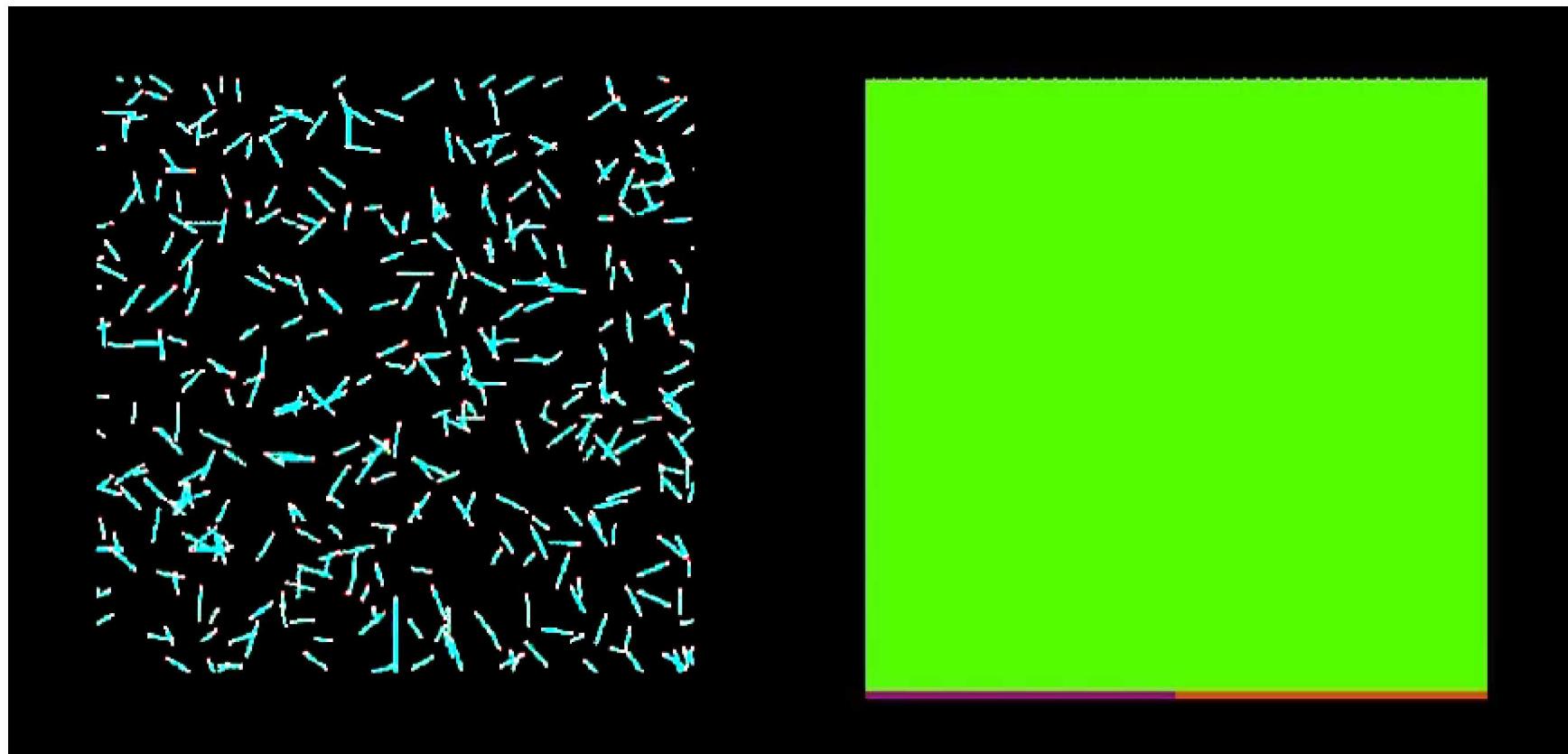
Metallic glass fracture (Hofmann
et al, Nature 2008)

Fracture in an elastic-plastic plate with a lot of defects

Defects

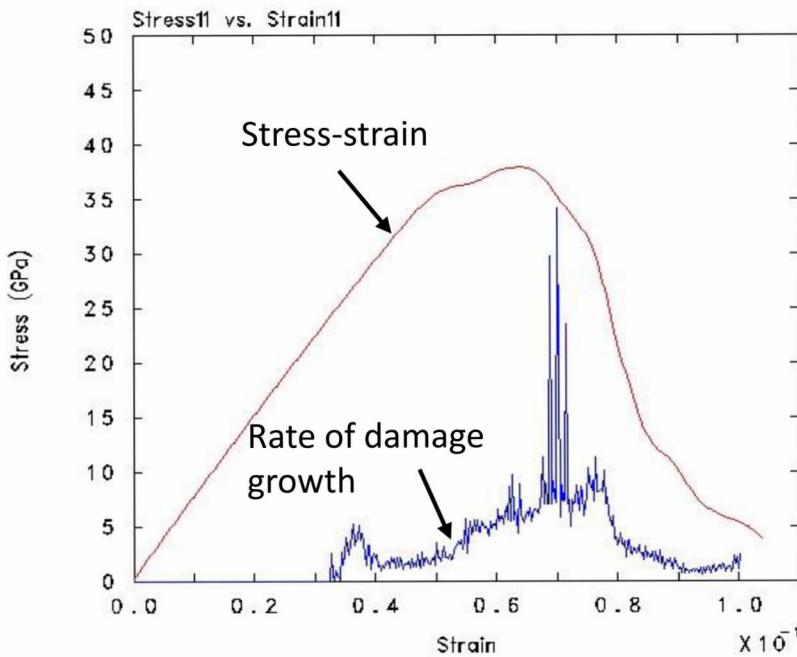
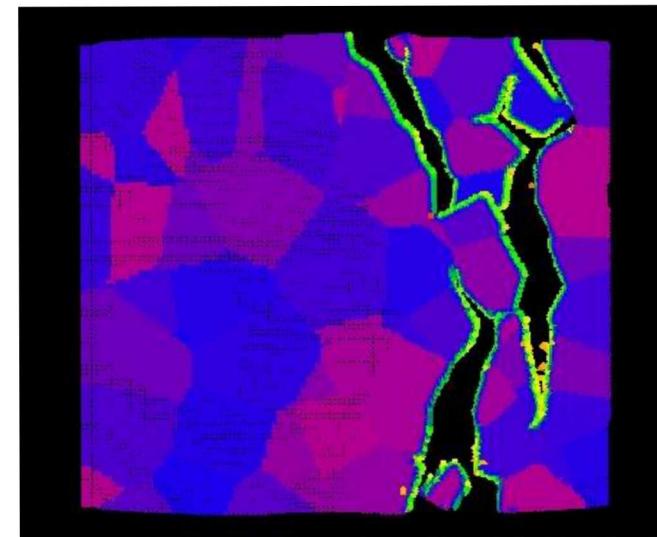
VIDEOS

Displacement

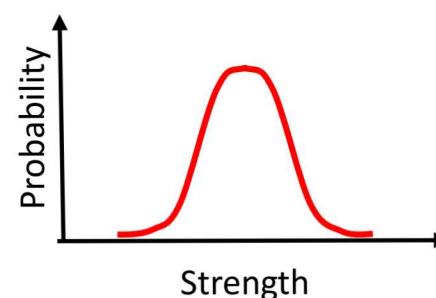


Failure of a graphene sheet

- Assign strength randomly to grain boundaries in each of many realizations.
- This one realization fails at some stress under uniaxial tension.
- Repeating with more realizations leads to statistical distribution of strength of the polycrystal.

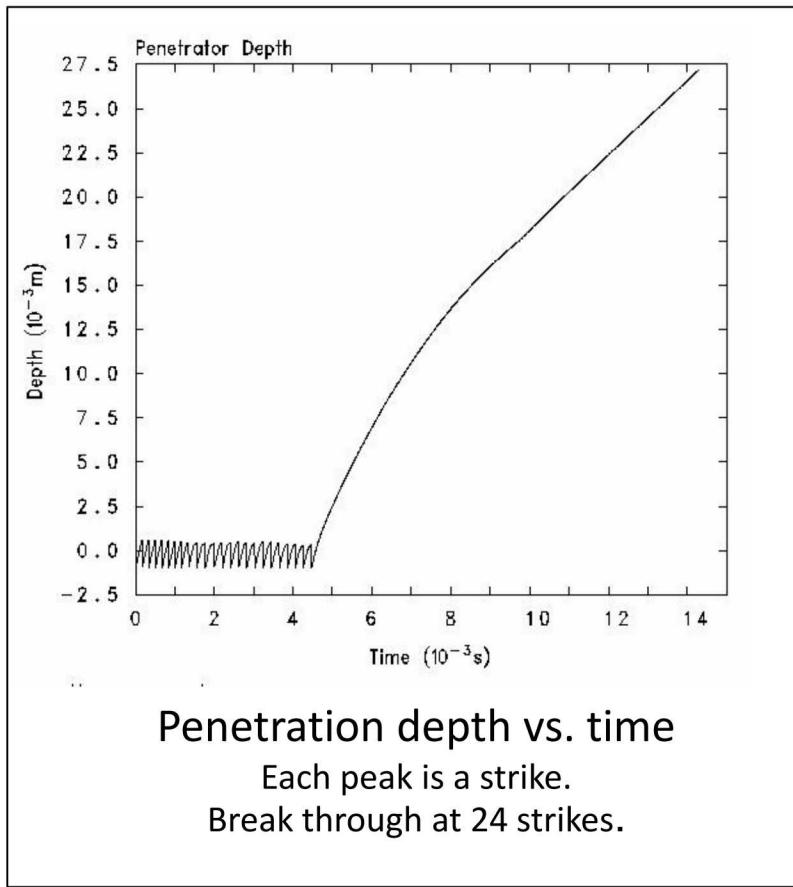
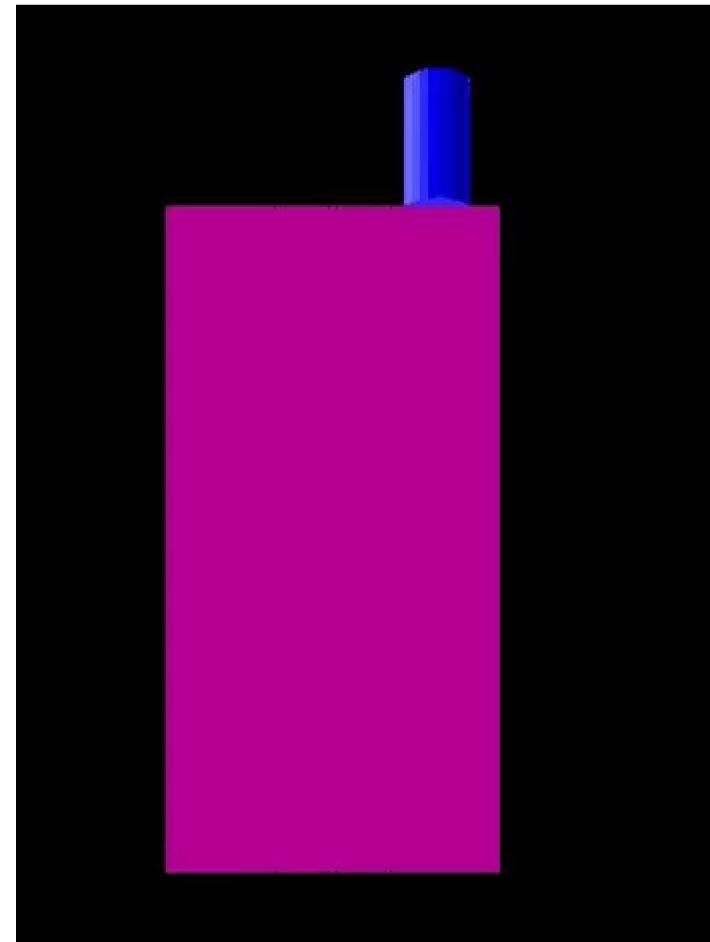


Cracks are mostly along grain boundaries



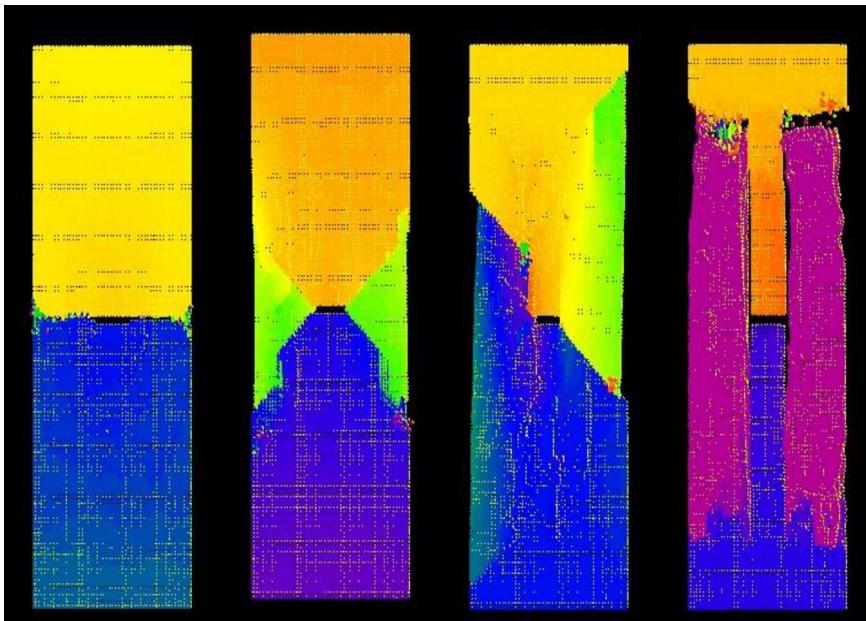
Accumulation of damage: Hammering on a block

VIDEO

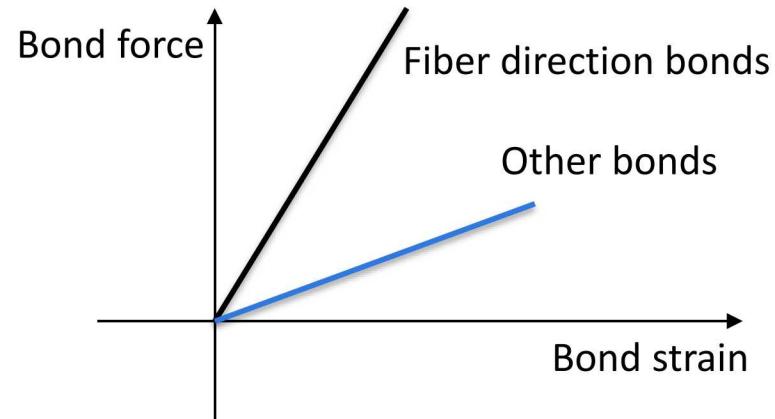


Composites: Anisotropy in both elastic and damage response

- Bond response depends on bond direction.



Stretching of a panel with a center crack:
Crack paths depend on stacking sequence



Summary

- By treating discontinuous and continuous deformation within the same field equations we gain a lot in modeling some aspects of materials science.
 - Autonomous nucleation and growth of defects.
 - Phase boundaries evolve according to driving force.
 - We avoid the need for supplemental equations that govern defect evolution.

