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* Quantum Hall effect and composite fermions (CFs)
e Berry phase of CFs

* PH symmetry of the fractional quantum Hall effect



Quantum Hall Effects
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similarity between IQHE and FQHE: Rxx
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Halperin-Lee-Read (HLR)
Composite Fermion (CF) Model

J.K. Jain, PRL 1989
HLR, PRB, 1993

one composite fermion = one electron + 2 flux quanta
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Atv =1/2
* Bef = By=1pBy=12 =0

e CF Fermi sea
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Featureless transport around v=1/2 — Fermi sea state
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When v = 1/2 and B4 # O

 Quantized in Landau levels

* IQHE of CFs

IQHE of CF
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Unclarified aspects of CF theory

apparent lack of particle-hole symmetry

Kivelson et al PRB (1997)
Lee, PRL (1998)
Kamburov et al. PRL (2014)

Under the CF model:

1/3 is the v=1 IQH state of CFs
2/3 is the v=2 IQH state of CFs

1/3 and 2/3 states have different topological order!
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This paper explores the uses of particle-hole symmetry in the study of the anomalous quantum Hall ef-
fect. A rigorous algorithm is presented for generating the particle-hole dual of any state. This is used to
derive Laughlin’s quasihole state from first principles and to show that this state is exact in the limit v — 1,
where v is the Landau-level filling factor. It is also rigorously demonstrated that the creation of m
quasiholes in Laughlin’s state with v=1/m is precisely equivalent to creation of one true hole. The
charge-conjugation procedure is also generalized to obtain an algorithm for the generation of a hierarchy of
states of arbitrary rational filling factors.

state y,, defined in (5). Hence this state has the filling fac-
tor v=1—1/m and (for N— o) is the exact particle-hole

dual of the state with v=1/m. For large but finite M it is

1/3 and 2/3 are the same states



Particle-hole symmetric Dirac theory of
composite fermions

Son, Phys. Rev. X5, 031027 (2015);

Metlitski and Vishwanath, arXiv:1505.05142; Wang and Senthil, arxiv:1507.08290;
Geraedts et al, arXiv:1508.04140; ...

Composite fermions meet Dirac

Journal Club for Condensed Matter Physics

I[. Is the composite fermion a Dirac particle?
Dam Thanh Son, Phys. Rev. X 5, 031027 (2015); arXiv:1502.03446

irac particles

CFs are treated as

1~

3/2
-3/2

CF filling factor for the 1/3 state is v*
CF filling factor for the 2/3 state is v*

Recommended with a commentary by Jason Alicea, Caltech

At first glance, 3D topological insulator surfaces and the half-filled Landau level of a 2D electron
gas appear to realize wholly disparate phenomena. Topological insulators typically arise in weakly
correlated, time-reversal-invariant systems and support a single Dirac cone at their boundary. The



1t Berry phase of composite fermions



Berry’s phase in graphene via SdH oscillations
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Y.B. Zhang et al, Nature (2005)



Density of CFs

Son, PRX 5, 031027 (2015);
Wang and Senthil, PRB 93, 085110 (2016).

 CF density is determined by magnetic field
* CF density = eB/2h

In order to reveal the &t Berry phase,
one needs to measure SdH oscillations

as a function of electron density at a
fixed magnetic field.



Heterojunction Insulated-Gate Field-Effect Transistor
(HIGFET)



HIGFET
high mobility down to very low densities
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~ n+GaAs
AlGaAs

2DES

Kane, Pfeiffer, West, and Harnett, APL,1993



Straight sidewall is important
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device works!
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Very large density range
~ 1x10° to ~ 7.5x10'! cm™2




Linear I-V at very low densities
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filling factor v
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SdH of CFs as a function of electron density
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Wang and Senthil, arxiv:1507.08290

(n V, B) \ B
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B,* =B—B,,(n,Y)=B—2n_h/e



similarity between IQHE and FQHE: R,
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Nature Physics (2017)
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intercept
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CFs around 3/2

FQHE occurs at v=2-n/(2n+1)
(n integer)

5/3<>n=1
4/3 > n=-2

For SdH oscillations at a constant B,
under the DCF model

B,* = 3%x(B —2n_h/3e)
n=-(B/2)x1/B_ *-1/2

—>Experiment ~ -0.5
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For standard SdH oscillations of
constant electron density

Under HLR picture
B,* = 3x(B,- B;),) = -(3n+2)e/n_h
—>Intercept at 1/B,* =0is -2/3

—>Experimentally ~ -0.665



linear density dependence of CF conductivity
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CF conductivity versus density
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Halperin-Lee-Read theory of CFs:
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Linear dependence in graphene
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Particle-hole symmetry (PHS) in the FQHE
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derive Laughlin’s quasihole state from first principles and to show that this state is exact in the limit v — 1,
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state y,, defined in (5). Hence this state has the filling fac-
tor v=1—1/m and (for N— o) is the exact particle-hole

dual of the state with v =1/m. For large but finite M it is

vV €> |-y



Examining energy gap of FQHE

Eg(v) = gvxe?/(ely) I magnetic length

E,(1-v) = gtvxe?/(elg)
PHS > gv=gl-V=g¢g

I, = (h/eB)Y/2

Eo(V) = E;(1-v) at fixed B Disorder broadening
E,(v) = gxe?/(elg) - T
E,(1-v) = gxe?/(elg) - T
PH symmetric disorder 2 I'(v) =T'(1-v)=T
E.(v) = E;(1-v) at fixed B
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HIGFET
high mobility down to very low densities
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E, measured at various magnetic fields

1/3 4.01 5.15 5.96 6.13 1.54
2/3 3.85 4.68 5.61 6.15 1.73
2/5 1.19 1.75 2.20 2.60 3.55
3/5 1.09 1.65 1.99 2.45 3.36
3/7 0.86 1577 1.50 2.18
4/7 0.77 1.12 1.40 2.18
4/9 0.55 0.75 1.24
5/9 0.50 0.69 1.28
5/11 0.57

6/11 0.56



Since energy gap of FQHE of electrons can be
viewed as cyclotron gap of IQHE of CFs

E, = heB.4/m*

B =B/(2p+1) (B fixed) E, = & e’
eff — g
m* oc /gl I2p+ll elg
oc BY2/(2p+1)
v =p/(2p+1)

(this scaling does not need to
assume PHS — Kun Yang)



* B=45T /
- B=6.0T /]
\ B=75T /
O 5 & Resast ¢
- \\ / :
e \VA AY/
¥ .
\O

3 \& -

%

%

\ //

.............. Y AT

E, oc BY2/(2p+1)

PHS =2 m* is the

i same for particle and
i hole

Or slope is the same
j for positive and
{ negative p’s

m* =~ 0.2 m,



Examining reflection symmetry of FQHE

electron conductance

o, (v)=0c, (1-v)

o,/ (V) = 1- o, (1-V)
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Thank you
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= 4R, x X/sinh(X) * exp(-1/ieBy*)

j;a A= Zﬂ:szT/Il(DCH () eBubi:/ln e
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X/sinh(X) ~ 1-X7/6 ~ 1

ARy = 4R x exp(-7/pBn™).

m*/mo = 0.26x\VB 1>



