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outline

• Quantum Hall effect and composite fermions (CFs)

• Berry phase of CFs

• PH symmetry of the fractional quantum Hall effect



Quantum Hall Effects
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similarity between IQHE and FQHE: Rxx
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Halperin-Lee-Read (HLR)
Composite Fermion (CF) Model

J.K. Jain, PRL 1989
HLR, PRB, 1993

one composite fermion = one electron + flux quanta

Beff B 200 x n= B 2nh/e = B Bv=1/2



At v 1/2

• Beff Bv=1 12-Bv=1 /2 O

• CF Fermi sea



Featureless transport around v=1/2 — Fermi sea state
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When v ~ 1 /2 and B eff ~ 0

• Quantized in Landau levels

• IQHE of CFs

IQHE of CF FQHE of e-
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IQHE of CF FQHE of e 
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Unclarified aspects of CF theory

apparent lack of particle-hole symmetry

Kivelson et al PRB (1997)

Lee, PRL (1998)

Kamburov et al. PRL (2014)

Under the CF model:

1/3 is the v=1 IQH state of CFs

2/3 is the v=2 IQH state of CFs

1/3 and 2/3 states have different topological order!
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This paper explores the uses of particle-hole symmetry in the study of the anomalous quantum Hall ef-
fect. A rigorous algorithm is presented for generating the particle-hole dual of any state. This is used to

derive Laughlin's quasihole state from first principles and to show that this state is exact in the limit v 1,
where v is the Landau-level filling factor. It is also rigorously demonstrated that the creation of m

quasiholes in Laughlin's state with v = 1/m is precisely equivalent to creation of one true hole. The
charge-conjugation procedure is also generalized to obtain an algorithm for the generation of a hierarchy of

states of arbitrary rational filling factors.

state tp. defined in (5). Hence this state has the filling fac-
tor  v = 1— 1/m and (for N 00) is the exact particle-hole
dual of the state with v 1/m. For large but finite M it is

1/3 and 2/3 are the same states



Particle-hole symmetric Dirac theory of
composite fermions

Son, Phys. Rev. X5, 031027 (2015);
Metlitski and Vishwanath, arXiv:1505.05142; Wang and Senthil, arxiv:1507.08290;

Geraedts et al, arxiv:1508.04140; ...

Composite fermions meet Dirac

Journal Club for Condensed Matter Physics
I. Is the composite fermion a Dirac particle?
Dam Thanh Son, Phys. Rev. X 5, 031027 (2015); arXiv:1502.03446

T T Tl 7 71 • iL P t 17 1 • 7 J.

CFs are treated as Dirac particles

CF filling factor for the 1/3 state is v* = 3/2
CF filling factor for the 2/3 state is v* -3/2

N., , CO 'V ,...I N..../

Recommended with a commentary by Jason Alicea, Caltech

At first glance, 3D topological insulator surfaces and the half-filled Landau level of a 2D electron
gas appear to realize wholly disparate phenomena. Topological insulators typically arise in weakly
correlated, time-reversal-invariant systems and support a single Dirac cone at their boundary. The



TC Berry phase of composite fermions



Berry's phase in graphene via SdH oscillations
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Density of CFs
Son, PRX 5, 031027 (2015);

Wang and Senthil, PRB 93, 085110 (2016).

• CF density is determined by magnetic field
• CF density eB/2h

In order to reveal the 7C Berry phase,
one needs to measure SdH oscillations
as a function of electron density at a
fixed magnetic field.



Heterojunction Insulated-Gate Field-Effect Transistor

(HIGFET)



HIGFET

high mobility down to very low densities

Vg

F11
n+ GaAls

AIGaAs

GaAs

2DES

Kane, Pfeiffer, West, and Harnett, APL,1993



Straight sidewall is important

contact area
(before Ni/Ge/Au)



, Annealed

Ni/Ge/Au

contact

device works!
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Linear I-V at very low densities
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SdH of CFs as a function of electron density
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Wang and Senthil, arxiv:1507.08290
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similarity between IQHE and FQHE: R.

1/3 4 n = 1
2/5 4 n = 2
3/7 4 n = 3

2/5

3/7

1r)

1/3

1

1

1
1
10

B (T)

,
1/2

3/7 4

,
15

1/3

v



i

(0,-1/2)

-1.5 -1.0 -0.5 CO 0.5 1.0

1/Bn* (1/T)

1.5

Nature Physics (2017)



a

B = 1.5T1/3

2/3 v=1 -

!

0.1 0.2
4

>>
a

3

2

1

0

0:3

1/1

0 
0 4

B = 5.0T

2/3

1.2

1
i

1/5

0  ,
0.5

B = 12.0T c)

1/3
2/3

A ii. ,. ,am.m..._. , I. k ilk.-ailli. k

1.0 1.5 2.0 2.5

Electron density (1011 cm-2)



O. 0

o o 0 o 0 o o o

(e)

- 1 . 0 
. 

I 
) 

0 2 4 6 8 10 12

Magnetic field (T)



3
2
1

-4
-2

4/3

7/5

1

B = 5T
T - 15mK

3/2

V

1

8/5

5/3

1.4 1.6 1.8 2.0 2.2
Electron density (1011 cm 2)

-1 o
1/E3n* (1-1)

1 2

CFs around 3/2

FQHE occurs at v=2-n/(2n+1)
(n integer)

5/3 <---> n = 1

4/3 <---> n = -2

For SdH oscillations at a constant B,

under the DCF model

13,* = 3x(B — 2neh/3e)

n = - (B/2) x 1/Bn*-1/2

4 Experiment " -0.5



(a) (b) (c)

xx
LL

I I •

B = 3T

0 7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

electron density (1011 cm-2)
4

2

0
z

-2

4
-3 -2 -1 0 1

1/B: (T1)

-4

B = 7T

1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2

electron density (10
11 
cm

-2
)

- 8

- 7

- 6

- 5

- 4

- 3

2 3 -1.5 -1.0 -0.5 0.0 0.5 1.0 1 5 -1.0

1/Bn* (T1)
-0.8 -0.6 -0.4 -0.2 0 0

intercept

Ma
gn

et
ic

 f
ie

ld
 (
T
)
 



5/3 
11/7

8/5

10/7

3/2

4/3

/5

4

3

2

-2

-3

-4

-3

2.5 3.0

Magnetic field (T)

-2 -1 0 1
1 /Bn* (1 /T)

3.5

2 3

FQHE occurs at v=2-n/(2n+1)
(n integer)

5/3 <---> n = 1

4/3 <---> n = -2

For standard SdH oscillations of

constant electron density

Under HLR picture

Bn* = 3x(Bv- B312) = -(3n+2)e/neh

4Intercept at 1/Bn* = 0 is -2/3

4 Experimentally r- -0.665



linear density dependence of CF conductivity
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CF conductivity versus density
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Halperin-Lee-Read theory of CFs:
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Linear dependence in graphene
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Particle-hole symmetry (PHS) in the FQHE
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This paper explores the uses of particle-hole symmetry in the study of the anomalous quantum Hall ef-
fect. A rigorous algorithm is presented for generating the particle-hole dual of any state. This is used to

derive Laughlin's quasihole state from first principles and to show that this state is exact in the limit v 1,
where v is the Landau-level filling factor. It is also rigorously demonstrated that the creation of m

quasiholes in Laughlin's state with v = 1/m is precisely equivalent to creation of one true hole. The
charge-conjugation procedure is also generalized to obtain an algorithm for the generation of a hierarchy of

states of arbitrary rational filling factors.

state defined in (5). Hence this state has the filling fac-
tor  v = 1— 1/m and (for N co) is the exact particle-hole
dual of the state with v 1/m. For large but finite M it is



Examining energy gap of FQHE

Eg(v) = gvxe2/(8/B)

Eg(1-v) = gl-vxe2/(8/B)

PHS 4 gv g l -V g

/B magnetic length

/B = (TVeB)1/2

E,(v) = E,(1-v) at fixed B Disorder broadening„ „

Eg(v) = gxe2/(E/B) — F

Eg(1-v) = gxe2/(E/B) — F

PH symmetric disorder 4 F(v) = F(1—v) = F

Eg(v) Eg(1-v) at fixed B._, ._,
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HIGFET

high mobility down to very low densities
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Eg measured at various magnetic fields
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Since energy gap of FQHE of electrons can be
viewed as cyclotron gap of IQHE of CFs

Eg = tieBeff/m*

Beff = B/(2p+1) (B fixed) Eg

m* cc e2/E/B

v = p/(2p+1)

C  e 2

e"- 1 2p+11 EIB

oc B1/2/(2p+1)

(this scaling does not need to
assume PHS — Kun Yang)
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Examining reflection symmetry of FQHE

electron conductance
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Thank you
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