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21 Outline

• Background
• Neutron Diffraction Measurements on AM Part
• Inherent Strain Method
• Multiscale Inherent Strain Method
• Lumped Laser Method
• Summary and Conclusions



High Thermal Gradients Produce High Residual
3 Stresses
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Stress is Calculated From the Elastic 
irst ii-reiosgaii4Irliratory"

• We measure the spacing between atoms very accurately, —10 ppm.

• Calculate lattice strains from change in atomic spacing due to stress.

— Lattice strain : E= dhkl - d0 

• If we know the spring constaiits, we can calculate the stresses from the
strains.

- ij C Eykl kl 6i =  [(1—v)Ei +v(E1 +Ek)1 i,j,k E L,T,N
(1+ v)(1-2v)

• It is important to note that the lattice strain is necessarily proportional to
e stress on the grain set, not the macroscopic stress.

Slide: Don Bro Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Los Alamos National Laboratory

Sample Dimensions and Objectives Drive Measurement Type

Neutrons: SMARTS

• Best spatial resolution of 0.5mm.

• Count times 5-60 minutes

• Sample table : horizontal travel ± 30 cm, vertical

± 60 cm, 370° rotation.

— 1500 Kg capacity.

• Titanium and Vanadium difficult or impossible.

• X=1-4Å.

• Beam cross section : 2mm x 2 mm

• Usually easy to get 3 orthogonal strain
components.

Slide: Don Bro Operated by Los Alamos ational Security, LLC for the U.S. Department of Energy's NNSA



Neutron Diffraction (ND) Measurements on AM
6 Part

• 316L stainless steel part
• >1000 layers
• Internal channels
• Neutron Diffraction results from Don Brown, Bjorn Clausen, and Maria

Strantza at LANSCE



Los Alamos National Laboratory

Stress Results Before and After Base Plate is Cut
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81 Inherent Strain Method

• Part size is challenging for full solution
• Inherent strain method developed for weld

stress prediction
• (Ueda, Fukuda, Tanigawa 1979; Ueda,

Kim, Yuan 1980, Hill and Nelson 1995)
• Strain tensor is applied in layers over time

• Quick approximation for distortion and
stress

• Does not capture local variations due to
different thermal gradients

E11 0 0

E =  0 E22 0
0 0 E33



9 Bammann-Chiesa-Johnson (BEL) Material Model
I

• Temperature and history-dependent viscoplastic internal state variable model

I• Stress is dependent on damage 4) and evolves according to

6 = 
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o- + E (1 — 4)) (e — ep)
E 1 — 4)

• Flow rule includes yield stress and internal state variables for hardening and damage
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• The isotropic hardening variable K evolves in a hardening minus recovery form.

. 
= K—

it 
+ .1- 

r 

411 ) 
tn.\

K  — Rd09)10ep
ill



Anisotropic Inherent Strain Model Using "Quiet"
10  Element Approach

• Transverse (normal to build
direction) strains are reduced

• Results are qualitatively
reasonable

• Elements activated using "quiet
element" approach (reduced
stiffness)
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1, I Inherent Strain Stress Contours
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• Axial stress values appear similar to ND measurements
• — 31:11:1 MPa exterior, — -200 MPa interior

• Wall time —3D min on 60 cpus (-12X faster than real-time 6 hr build)
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Residual Stress Predictions Compare Well with ND Results for Center
12  Line
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Second Attempt: Multiscale Inherent Strain Method
13 With Fully Inactive Elements
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• Run full fine-scale solution on manageable part with same process settings —
tensile dogbone gage section

• Upscale strain information to inherent strain model
• Use fully inactive elements rather than quiet elements in inherent strain model
• Could capture process dependent information



14 Full Simulation Thermal Approach

Pre-meshed part is initialized with
"inactive" elements. Baseplate
elements are active.

Laser heat source is scanned
according to input path

Elements are activated by a
thermal conductivity increase once
they reach melt temperature

Conduction, convection, and
radiation are considered.

Temperature (K)
2500

1948

—1396

=

-845

-293

Approximate Melt Pool

1



15 Full Simulation Solid Mechanics Approach

Pre-meshed part is initialized
with "inactive" elements.
Baseplate elements are active.

Thermal output file is read at
every time step to provide
temperatures

Elements are activated once
they reach melt temperature

Residual stress builds as
elements contract upon cooling
and build thermal strain
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16 Full Simulation Thermal and Structural Results

Thermal Structural
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17 Significant Tensile and Compressive Residual Stresses Remain
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• Average strain values are upscaled to inherent strain model
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Results Show More Deviation Than Fluiet Element Approach But Faster
18  Solution Time
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191 Lumped Laser Method
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Results With 41:1 Layers and —0.4mm Elements Compare Well With
20 Experiments
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• Method begins to capture stress asymmetry in green and blue lines that inherent strain method
misses

35



Ax
ia

l 
S
t
r
e
s
s
 (
M
P
a
)
 

21
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221 Comparison of Approximation Methods
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nl Conclusions

• Neutron diffraction can be used to determine residual stresses in AM parts
• Stresses can be near yield level.
• Stresses relax when removed from base plate, and components distort.
• Exemplar part contains very high residual stresses (at or above yield)
• Residual stress can be (approximately) predicted using efficient reduced order methods
• Residual stress predictions near edges of part need improvement in inherent strain method
• Coarse element size can lead to stress oscillations

Future Work
• Heat input in lumped laser model needs to be validated

• Average stresses over 2mm volume for direct comparison to ND results
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25 Importance of Baseplate Boundary Conditions
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26 SNL Modeling Work

Codes 
LAMMPS, SPPARKS,

Sierra/Aria,
Sierra/Adagio

Powder Spreading
Dan Bolintineanu

Powder Behavior
Mark Wilson

10-6

Part Scale Thermal & Solid Mechanics 
Kyle Johnson, Kurtis Ford, Mike Stender,

Lauren Beghini & Joe Bishop

Mesoscale Thermal Behavior
Mario Martinez & Brad Trembacki

Mesoscale Texture/Solid Mechanics/CX
Judy Brown, Theron Rodgers and Kurtis Ford

02
sY 

Malt, zane

a, VICr051r1JC11,13

10-3
Length Scale (m)

Part Scale Microstructure
Theron Rodgers


