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High Thermal Gradients Produce High Residual
;1 Stresses
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Stress is Calculated From the Elastic Lafstf'ca%os i?%ianwatow7‘;

*‘f“m*ﬁi’%

* We measure the spacing between atoms very accurately, ~10 ppm.

e Calculate lattice strains from change in atomic spacing due to stress.
hkl 0

— Lattice strain : & =

e If we know the spring constahts, we can calculate the stresses from the
strains. E

- 0 =Gl T T i) i-2v)

* It is important to note that the lattice strain is necessarily proportlonal to
e stress on the grain set, not the macroscopic stress.

[(l—v)gl. +V(5j +5k)], i,j,ke LLT,N

SI |de Don Brown Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Los Alamos National Laboratory
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Neutrons: SMARTS

Hoop Strain ‘ Radﬁ@mﬁwin

90° detector
P8R 06

* Best spatial resolution of 0.5mm. « A=1-4A.
* Count times 5-60 minutes * Beam cross section : 2mm x 2 mm

« Sample table : horizontal travel =30 cm, vertical
+60 cm, 370° rotation.

— 1500 Kg capacity.
* Titanium and Vanadium difficult or impossible. :

* Usually easy to get 3 orthogonal strain
components.

S||de Don Brown Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA



Neutron Diffraction (ND) Measurements on AM
« | Part

» 316L stainless steel part

« >1000 layers

* Internal channels

* Neutron Diffraction results from Don Brown, Bjgrn Clausen, and Maria
Strantza at LANSCE




Los Alamos National Laboratory
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Stress Results Before and After Base Plate is Cut ; ;‘v\}
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s | Inherent Strain Method

» Part size is challenging for full solution
* Inherent strain method developed for weld
stress prediction
« (Ueda, Fukuda, Tanigawa 1979; Ueda,
Kim, Yuan 1980, Hill and Nelson 1995)
« Strain tensor is applied in layers over time
* Quick approximation for distortion and
stress
» Does not capture local variations due to
different thermal gradients

é11 0 0
e=10 &Erp 0
0 0 €33




o | Bammann-Chiesa-Johnson (BCJ) Material Model

Temperature and history-dependent viscoplastic internal state variable model

Stress is dependent on damage ¢ and evolves according to

. _(E_ ¢ .
O'=(E—1_¢>O'+E(1—¢)(E—Ep)

Flow rule includes yield stress and internal state variables for hardening and damage

T _
€y, = fsinh™ <% — 1)

The isotropic hardening variable « evolves in a hardening minus recovery form.

K = K% + (H(8) — Rz (B)K)é,




Anisotropic Inherent Strain Model Using “Quiet”
ol Element Approach

» Transverse (normal to build [5'Oe+08
direction) strains are reduced 2ev8

« Results are qualitatively
reasonable

» Elements activated using “quiet
element” approach (reduced
stiffness)
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« | Inherent Strain Stress Contours
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o Axial stress values appear similar to ND measurements

 ~ 300 MPa exterior, ~ -200 MPa interior
 Wall time ~30 min on B0 cpus (~12X faster than real-time & hr build)




Residual Stress Predictions Compare Well with ND Results for Center
12 I_iI'IE .‘

Predicted Axial Residual Stress
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Second Attempt: Multiscale Inherent Strain Method
s I With Fully Inactive Elements
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» Run full fine-scale solution on manageable part with same process settings —
tensile dogbone gage section

» Upscale strain information to inherent strain model

« Use fully inactive elements rather than quiet elements in inherent strain model

* Could capture process dependent information
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w | Full Simulation Thermal Approach [

Pre-meshed part is initialized with
"Iinactive" elements. Baseplate
elements are active.

Laser heat source is scanned
according to input path

Temperature (K)

Elements are activated by a
thermal conductivity increase once
they reach melt temperature
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Conduction, convection, and
radiation are considered.

Approximate Melt Pool




Full Simulation Solid Mechanics Approach

Pre-meshed part is initialized
with "inactive" elements.
Baseplate elements are active.

Thermal output file is read at
every time step to provide
temperatures , vonmjsos

-8.000e+08

6e+8
Elements are activated once ovs
they reach melt temperature »

~0.000e+00

Residual stress builds as
elements contract upon cooling
and build thermal strain

Approximate Melt Pool
(~zero stress)




w6 | Full Simulation Thermal and Structural Results
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7 | Significant Tensile and Compressive Residual Stresses Remain
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« Average strain values are upscaled to inherent strain model



Results Show Maore Deviation Than Quiet Element Approach But Faster

s | Solution Time
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Fully inactive element activation method reduces wall time to ~8 min on B0 cpus (45x faster than real-time b hr

build)
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» 1 Lumped Laser Method
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e Approach similar to Hodge &7 &/ 2014 and 2016; Stender ¢ 2/ 2018; Strantza,  Ganeriwala £ 2/ 2018
» ~3 mm laser diameter

Laser radius to layer height ratio and total inter-layer cooling time held constant from actual conditions
0.84 mm layer height

« laser speed unchanged - 1400 mm/s
40 layers

Wall time ~b hours on 100 cpus




Results With 40 Layers and ~0.4mm Elements Compare Well With
o | Experiments

Predicted Axial Residual Stress
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 Method begins to capture stress asymmetry in green and blue lines that inherent strain method
MISSES




Axial Stress (MPa)

21 ‘ Effect of Layer Agglomeration and Mesh dize
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Axial Stress (MPa)

22‘ Comparison of Approximation Methods
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»1 Gonclusions

 Neutron diffraction can be used to determine residual stresses in AM parts

o Stresses can be near yield level.

o Stresses relax when removed from base plate, and components distort.

 Exemplar part contains very high residual stresses (at or above yield)

* Residual stress can be (approximately) predicted using efficient reduced order methods

* Residual stress predictions near edges of part need improvement in inherent strain method
 [oarse element size can |ead to stress oscillations

Future Work

 Heat input in lumped laser model needs to be validated
 Average stresses over Zmm volume for direct comparison to ND results
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Questions?




25 | |Importance of Baseplate Boundary Conditions
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26 I SNL Modeling Work
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