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Chance Constraint Setting

This is a linear Joint Chance Constraint:

P(xt < yt̀-' v1.4"), Vt E T) > 1 — E

Background:

• Two-stage stochastic program with recourse

o First stage decision, xt, second-stage decision, ).'

• Possibly integer restrictions on x and/or y

• i.i.d. samples of uncertainty wtw

Bismark Singh (Sandia) Chance-Constrained Optimization March 21, 2019 4 / 40



Challenges

o CC models are computationally intractable

o A known NP-hard problem

o Existing algorithms not scalable to practical sized problems

o Feasible region is non-convex
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Generic CC model

max
x,y

s.t.

E (profitt — E[costd (la)

ter
ED(reliabilityt,Vt E > 1 — E (lb)

(lc)some domain.
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Generic CC model

rnax E (Rtxt - E[BLYN) (2a)
x,y

tE T

s.t. TED(y° 1/14° > Xt, vt E T) > 1 — (2b)

(x, y) E XY. (2c)
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Approximations with classical probability bounds

Satisfying a JCC is an intersection of events. Failing a JCC is a union of

events.

We can rewrite the JCC as follows:

U Ft) E
teT

where Ft = fw : xt > yt + wtwl.
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Approximations with classical probability bounds

IP( U Ft)
tE T

Consider an optimization model with a JCC with a maximization objective

(such as model (2)).

o Lower Bound (LB): Approximate the LHS using a quantity larger
than IF(UtET Ft). Feasible region is restricted.

o Upper Bound (UB): Approximate the LHS using a quantity smaller

than P(UteT Ft). Feasible region is enlarged.
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Approximations with classical probability bounds

P(Uter Ft) = 52+ • • • (-1)ITI-1ST, where Sk = P(Ei<4‹...<ik<17-1 F11 n • • • n Fik).

l Approximating bounds:
Bonferroni bounds:

P(U Ft)
tE T

F(U Ft)
tET

Tighter bounds from Sathe et al. [1980]:

U Ft)
tE T

IP(U Ft)
tE T

.51 <— LB

Sl — S2 UB.

Sl — TS2 LB

Sl + 2S2
UB.

T2

And more from Dawson and Sankoff [1967]:

Si2 

IP( U Ft) + 152 
UB

tE T

2ES2 > ani51 n = 0,1, .. . — 1 <— UBlinearized.

(3a)

(3b)

(4a)

(4b)

(5a)

(5b)
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Recall...

E (Rtxt — E[BtM)rnax (6a)
tET

s.t. LP(yt + 144") > xt, et E T) > 1 — e (6b)

0 < < A,* E T,w e (6c)

xt > 0,Vt E T. (6d)
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Computational results

We compare two sampling procedures: (a) ARMA(2,2) process, and (b)
normal random variables. Both samples have the same hourly means and
variances.
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Summary of results

Accepted: Optimization Letters (2019)

o Bonferroni lower bound and Dawson & SankofF linearized bound

consistently perform better than others

fa Weaker correlation in uncertainty leads to easier-to-solve models

o MIQCP formulation of Dawson & Sankoff bound is challenging
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Stochastic unit commitment

Standard unit commitment (UC) problem: which thermal generators

should be scheduled to meet power demand, while ensuring feasible

operations?
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Stochastic unit commitment

Standard unit commitment (UC) problem: which thermal generators

should be scheduled to meet power demand, while ensuring feasible

operations?

Stochastic unit commitment (UC) problem: which thermal generators

should be scheduled to meet power demand, while ensuring feasible

operations, under uncertainty (of demand, prices, renewables...)?
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Stochastic unit commitment

Standard unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations?
Stochastic unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations, under uncertainty (of demand, prices, renewables...)?

But...

o Thermal generator operational limits are based on engineering
judgments

o Can be exceeded in practice, for short periods

o System operators do run thermal generators beyond these limits
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Stochastic unit commitment

Proposed model
o Allow thermal generators to "occasionally" violate operational limits

o Violations should be few (else, increased maintenance costs)

o Violations should not be large (there are absolute ratings of

generators)

O 1% savings in energy production is worth $1 billion per year in the

U.S. alone
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Stochastic unit commitment

Proposed model

• Let denote a "non-nominal" operation in hour t for generator g
in scenario w

o During non-nominal operations, generator's operating region expands

from [Pg,Pg] to [Pg,Pg]

o Non-nominal mode of generation is more expensive

fa Number of non-nominalities is few:

1c2H-T-Hgl EgEg EtE T EcoEf2 Yg'w < almost a chance-constraint!
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Setup

We use:

g
P = (1 +

Pg = (1 — Mpg

Cg = (1 + -))CLg

Cg = (1 + 'T)CLg'g

WECC240++ system with 85 thermal generators, 50 scenarios and
RTS-GMLC system with 73 thermal generators, 16 scenarios
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Computational results for the RTS-GMLC 16 scenario case
for 10 July 2020.

Under second review: Computational Management Science

Table: MIP gap = 0.1%

e 0 1, Cost (M$) Savings (%) Time (sec) MIP gap (%)
0 3.89 0.00% 33 

0.01 0.05 0.1 3.84 1.21% 46
0.2 3.84 1.20% 48 -

0.1 0.1 3.83 1.51% 82 -
0.2 3.83 1.50% 106 -

0.05 0.05 0.1 3.83 1.53% 65 -
0.2 3.83 1.45% 100 -

0.1 0.1 3.81 2.08% 1800 0.22%
0.2 3.82 1.82% 1800 0.15%

o Increase e increase savings

o Increase increase savings

o Increase 7 decrease savings
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Cost savings for the RTS-GMLC 16 scenario case for 10
July 2020.

Under second review: Computational Management Science

e 0 -y Optimal Limited No nuclear
0.01 0.05 0.1 1.21% 0.71% 1.06%

0.2 1.20% 0.69% 1.04%
0.1 0.1 1.51% 1.14% 1.15%

0.2 1.50% 1.10% 1.11%
0.05 0.05 0.1 1.53% 0.70% 1.22%

0.2 1.45% 0.69% 1.15%
0.1 0.1 2.08% 1.14% 1.41%

0.2 1.82% 1.10% 1.28%

Limited = at most one non-nominal operation per generator per day
No nuclear = no non-nominal operation for the nuclear unit in this system
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An algorithm for two-stage CC stochastic program

Comoro Manag Sci
Imps://doi.org/10.1007/,10287-018-0309-x

CrossHark

ORIGINAL PAPER

An adaptive model with joint chance constraints for a
hybrid wind-conventional generator system

Bismark Singh' • David P. Morton2 •
Surya Santoso3

Received: 8 September 2017 / Accepted: 19 April 2018
Springer-Verlag GmbH Germany, part of Springer Nature 2018
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Hybrid solar-battery storage system

under review...

A chance-constrained optimization model for day-ahead scheduling of
a hybrid solar-battery storage system

Bismark Singh • David Bozo

Received: date / Accepted: date

Abstract We develop a novel chance-constrained optimization model for a hybrid solar-hattery storage
system. Solar povrer in excess of the promise is used to charge the battery, while povrer short of the promise
is met hy discharging the hattery. We ensure reliable operations hy using a joint chance constraint. Models
with a few hundred scenarios are relatively tractable, for larger models, we demonstrate how a Lagrangian
relaxation scheme provides improved results.

Keywords Chance constraints . Stochastic optimization . Solar power - Photovoltaic power station •
Battery storage
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Public health: Largely from PhD dissertation

BMC Research Notes

Estimation of single-year-of-age 
* 

counts of live births, fetal losses, abortions,
and pregnant women for counties of Texas

Marect
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Also under review...

Emtionary Stahl, Strategieg a Que.e koa.
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Also under review...

lirylaftltallONE COME.EUTTAND DECOMPOSITON ALGORITHMS

RffrIN IITIMINAM. OLEG • ritneoryr, 16,11,11;11

Evolutionary Stahl, Etrategiry h, a Q.
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Optimizing over JCCs

ut̀"' = 1: failure at t in scenario w

vw, = 1: failure at t and t' in scenario wtt

xt — .),'" — 144' < Wilt̀ ',Vt E T, co E Si

/ 

t4',„ < ut̀', (t , e) E T, t < e, co E Q
McCormick envelope t4'',, < u‘t°,,V(t, e) E T, t < e, w E Q

1,4',t, > tit° + Lit,, — 1, v(t, e) E T, t < e, co E Q
u`f = {0, 1}, Vt E T, t4J,t, = {0, 1},V(t, 0 E, w E Q
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Computational results: ARMA (large correlation)

e
Bounding
constraint

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

Gap
from optimal

0.01 (3a) 8,351.3 8,351.3 0% 2 3.3%
(3b) 21,282.8 21,282.8 0% 12 59.4%
(4a) 8,351.3 8,365 .8 0.1% 2100 3.3%
(4b) 8,339.6 10,682.1 21.9% 2100 19.2%
(5a) 8,339.7 8,726.7 4.5% 2100 1.1%
(5b) 8,688.9 8,702.1 0.2% 2100 0.8%

0.03 (3a) 8,374.6 8,374.6 0% 2 8.5%
(3b) 22,353.2 22,353.2 0% 14 59.0%
(4a) 8,339.6 8,755.4 4.7% 2100 8.9%
(4b) 8,339.6 13,321.2 37.4% 2100 31.3%
(5a) 9,137.3 9,311.4 1.9% 2100 1.7 %
(5b) 9,074.4 9,252.2 1.9% 2100 1.1%

Table: Tightest lower and upper bounds for e = 0.01 are 8,351.3 and 8,702.1;
true optimal value is 8,634.1
Tightest lower and upper bounds for E = 0.03 are 8,374.6 and 9,252.2; true
optimal value is 9,154.9
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Computational results: Gaussian (weak correlation)

e
Bounding
constraint

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

Gap
from optimal

0.01 (3a) 9,100.8 9,100.8 0% 1 2.7%
(3b) 21,606.6 21,606.6 0% 18 56.7%
(4a) 9,102.0 9,113.3 0.1% 2100 2.7%
(4b) 9092.3 11,365.5 20% 2100 17.7%
(5a) 9,434.3 9,486.3 0.5% 2100 1.4%
(5b) 9,421.5 9,452.3 0.3% 2100 1.1%

0.03 (3a) 9,124.3 9,124.3 0% 2 7.7%
(3b) 22,762.1 22,762.1 0% 21 56.6%
(4a) 9,124.8 9,198.4 0.8% 2100 7.7%
(4b) 9,092.3 13,907.6 34.9% 2100 28.9%
(5a) 9,092.3 10,062.6 9.6% 2100 1.8%
(5b) 9,092.3 10,004.8 9.1% 2100 1.2%

Table: Tightest lower and upper bounds for e = 0.01 are 9,100.8 and 9,449.9;
true optimal value is 9,353.2
Tightest lower and upper bounds for E = 0.03 are 9,124.3 and 10,004.8; true
optimal value is 9,884.0
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Computational results: ARMA (large correlation) with 500
scenarios

Bounding
E constraint

0.01

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

(3a)
(3b)
(4a)
(4b)
(5a)
(5b)

0.03 (3a)
(3b)
(4a)
(4b)
(5a)
(5b)

8,453.4 8,453.4 0%
21,582.9 21,582.9 0%
8,701.0 8,701.0 0%
10,462.7 11,318.4 7.5%
8,348.9 40,116.9 79.2%
8,348.9 8,772.9 4.8%
8,542.5 8,542.5 0%
22,570.6 22,570.6 0%
8,348.9 9,396.1 11.1%
8,348.9 15,127.8 44.8%
8,348.9 41,151.4 79.8%
8,348.9 9,352.9 10.7%

1
129
1717
2100
2100
2100
3
175
2100
2100
2100
2100

Gap
from optimal

2.9%
59.7%
0%

23.1%
78.3%
0.8% 
7.3%
59.2%
9.4%
39.1%
77.6 %
1.5%

Table: Tightest lower and upper bounds for E = 0.01 are 8,701.0 and 8,772.9;
true optimal value is 8,701.0
Tightest lower and upper bounds for E = 0.03 are 8,542.5 and 9,352.9; true
optimal value is 9,211.3
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Computational results: Gaussian (weak correlation) with
500 scenarios

Bounding
E constraint

0.01

Optimal objective value
Lower bound Upper bound MIP gap

Time
(seconds)

(3a)
(3b)
(4a)
(4b)
(5a)
(5b)

0.03 (3a)
(3b)
(4a)
(4b)
(5a)
(5b)

9,005.1 9,005.1 0%
21,503.7 21,503.7 0%
8866.9 8,889.3 1.3%
8,866.9 11,071.9 19.9%
8,866.9 40,126.1 77.9%
9,343.6 9,390.3 0.5%
9,148.2 9,148.2 0%
22,565.4 22,565.4 0%
8,866.9 9,315.3 4.8%
8,866.9 13,711.9 35.3%
8,866.9 41,187.8 78.5%
8,866.9 9,990.9 11.2%

1
75
2100
2100
2100
2100
3
46
2100
2100
2100
2100

Gap
from optimal

3.7%
56.5%
5.1%
15.6%
76.7%
0.5% 
7.4%
56.2%
10.2%
27.9%
76.0 %
1.2%

Table: Tightest lower and upper bounds for E = 0.01 are 9,005.1 and 9,390.3;
true optimal value is 9,346.4
Tightest lower and upper bounds for E = 0.03 are 9,148.2 and 9,990.9; true
optimal value is 9,874.1
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Stochastic unit commitment model

lndices and Sets
g E g
t E T
I E ,Cg
E Sg

w E

Thermal generators.
Hourly time steps: 1, , T; i.e., [a, b) E T X T such that b > a + UTg .
Piecewise production cost intervals for generator g: 1, . ,
Start-up categories for generator g, from hottest (1) to coldest (SO.
Scenarios:

Parameters: First Stage

C14 Marginal cost for piecewise segment / for generator g ($/MWh).
T'g Marginal cost for production above Pg ($/MWh).
g Marginal cost for production below Pg ($/MWh).

CR'g Cost of generator g running and operating at minimum production Pg ($/h).
Cs,g Start-up cost of category s for generator g ($).
DTg Minimum down time for generator g (h).
Pg Maximum power output for generator g under normal operations (MW).

i'g Maximum power output for generator g under non-nominal operations (MW).
Pg Minimum power output for generator g under normal operations (MW).
Pg Minimum power output for generator g under non-nominal operations (MW).

fs,',g Maximum power available for piecewise segment / for generator g (MW) (with 17'.°4 = Pg).
RDg Ramp-down rate for generator g (MW/h).
RUg Ramp-up rate for generator g (MW/h).
SDg Shutdown ramp rate for generator g (MW/h).
SUg Start-up ramp rate for generator g (MW/h).
TCg Time down after which generator g goes cold (h).

7'4 Time offline after which the start-up category s is available (h) (with T1,g = DTg , TSg ,g = TCg)
UTg Minimum up time for generator g (h).

0 0
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Stochastic unit commitment model

Parameters: Second Stage
Dr Load (demand) at time t in scenario w (MW).
W/r Maximum power from renewables at time t in scenario w (MM.

t Minimum power from renewables at time t in scenario (MW).

Variables: First Stage
ugir Commitment status of generator g at time t, E {0,1}.

Start-up status of generator g at time t, E 10, 1}.
wgt 

t') 

Shutdown status of generator g at time t, E {0,1}.
vg Indicator arc for shutdown at time t, start-up at time ti, uncommitted for i E [t, t'), for
"M 

generator g, E {0, 1}, [t, t/ ) such that t + DTg < < t TCg — 1.

Variables: Second Stage

/4'' Power above minimum from generator g at time t in scenario co (MW).
Pg'" Power above maximum from generator g at time t in scenario co (MW).
Pit ''' Power below minimum from generator g at time t in scenario co (MW).
/4,..,

ph,b., 
Power from piecewise interval / for generator g at time t in scenario co (MW).

rt Power from renewables at time t in scenario co (MW).

yf '" Non-nominal operation status of generator g at time t in scenario (MW).

Bismark Singh (Sandia) Chance-Constrained Optimization March 21, 2019 35 /40



Stochastic unit commitment

subject to:

min L. L. E E[ci, + Cg Pg + CR 'g uf + c
geg tET ler,g

4 — 4_1 = 4 — wt

E vg < 4
i=t— LITg +1

E wf 1
i=t— DTg+1

t—DTg

E xg, t) < vg[t   t
rt =t— TC8" +1

t+ TCg

E xg < wg[t ,)  t
=t+DTB

gg
= cs,g4 E (Cs,g cs,g)

s=1 t'=t Ts+1,g +1

xg

[r' ,r)

) (7)

Vt E T, Vg E g (8a)

Vt E [UTg, Vg E g (8b)

Vt E [DTg, Vg E g (8c)

Vt E T, Vg E g (8d)

Vt E T, Vg E g (8e)

Vt E T, Vg E g (8f)
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Stochastic unit commitment

pig'" < (Pg — Pg)uf — (Tx — SUg)vf — (Pg — Spg)w}1 Vt E T, Vg E g>1,Vw E n (9a)

pf'w 5 05g - Egg _ mg — sugg Vt E T, vg E gl, Vw E n (9b)

pr < (Pg — Pg)uf — Mg — 5Dg)wf+1 Vt E T, Vg E gl, Vw E n (9c)

pf'w — pfl 5. (SUg - RU8 - Pg)vf + RUg uf Vt E T, Vg E g, Vw E n (9d)

pfLui — pf'w 5 (.513g - RD8 - Pg)wf + RD8 4_, Vt E T, Vg E g, Voi E SI (9e)

Vt E T, Vg E g, Vai E sz (9f)Pf = E dt'g'w
IEG8

< (-01,g _ /7,1-1,8)u8 vt E T, VI e Lg, Vg E G, vto E S2 (9g)
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Stochastic unit commitment

yr G 4 — 4 — wf+1
yr — 4
yr < 4 — Wf+1
T.tr'w < (/3 — /3) ypw

12r (F2 — 12) 44,"'

Vt E T, Vg E g>l,vw E

bit E T, Vg E E

Vt E T, Vg E g1,vco E

Vt E T, Vg E g, Vw E

Vt E T, Vg E g, vw E

(10a)

(lob)

(lOc)

(lOd)

(10e)

E (pf,w +Pr — pg,w +pguf)+r,"' = Dtw V't E T, Vw E S2 (11)

gE g

1
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E
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Vt E T, Vn E N,VwEQ (13c)
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Computational results for the WECC240++ 50 scenario

test case for 11 May 2013.

Table: MIP gap = 0.1%

e 0 7 Cost (K$) Savings (%) Time (sec) MIP gap (%)

0 64.41 0.00% 183 - 

6.01 0.0 0.1  64.20  0.33% 275

0.2 64.21 0.31% 242 -

0.1 0.1 64.03 0.59% 258
0.2 64.04 0.58% 317 -

0.05 0.05 0.1 63.86 0.85% 275 -

0.2 63.90 0.80% 343 -

0.1 0.1 63.35 1.64% 378 -

0.2 63.42 1.55% 371 -

o Increase E increase savings

Q Increase increase savings

• Increase decrease savings
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