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Chance Constraint Setting

This is a linear Joint Chance Constraint:

Pxt <y¥+wpVteT)>1—¢

Background:
@ Two-stage stochastic program with recourse
o First stage decision, x;, second-stage decision, y;’
@ Possibly integer restrictions on x and/or y

@ i.i.d. samples of uncertainty wy’
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Challenges

CC models are computationally intractable
A known NP-hard problem
Existing algorithms not scalable to practical sized problems

Feasible region is non-convex
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Generic CC model

Ay Z (profit, — E[cost] (1a)
teT

st.  P(reliability,,Vt e T) > 1—¢ (1b)
some domain. (1c)
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Generic CC model

max
Xy

s.t.

Z (Rexe — E[Bry;’]) (22)

teT
Plyy + wf > x,VteT)>1—¢ (2b)
(%, ¥) € XY. (2¢)
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Approximations with classical probability bounds

Satisfying a JCC is an intersection of events. Failing a JCC is a union of
events.

where Fr = {w : x¢ > y¢ + wy'}.
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Approximations with classical probability bounds

P(|JFe)<e

teT
Consider an optimization model with a JCC with a maximization objective
(such as model (2)).
@ Lower Bound (LB): Approximate the LHS using a quantity larger
than P(J,c 1 Ft). Feasible region is restricted.
e Upper Bound (UB): Approximate the LHS using a quantity smaller
than P(J,c 1 Ft). Feasible region is enlarged.

March 21, 2019 10 /40
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Approximations with classical probability bounds

P(Uier F)=S51— S+ (_1)IT|715Tv where Sy = P(Zlgil<-~<ik§IT\ Fiyn---0F).

Approximating bounds:

Bonferroni bounds:

P(|JF)< S« LB (3a)
teT
P(|JF)> S-S« UB. (3b)
teT

Tighter bounds from Sathe et al. [1980]:

P(UFR)< Si-2S« LB (4a)
Ll

P(|JF)> w UB. (4b)
teT

And more from Dawson and Sankoff [1967]:

S
P F B
(UF) > g v (55}
teT
2eS; > anS1+ Bn,n=0,1,...|N| — 1+ UBlinearized. (5b)
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Recall...

max > (Rexe — E[Beyy]) (6a)

Y teT

st. Pl 4+wd>x,VteT)>1—¢ (6b)
0<y/!<AVte T, we (6¢)
xt > 0,vVte T. (6d)
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Computational results

We compare two sampling procedures: (a) ARMA(2,2) process, and (b)
normal random variables. Both samples have the same hourly means and
variances.

Figure: Correlation structure of w;
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Summary of results

Accepted: Optimization Letters (2019)

@ Bonferroni lower bound and Dawson & Sankoff linearized bound
consistently perform better than others

@ Weaker correlation in uncertainty leads to easier-to-solve models

e MIQCP formulation of Dawson & Sankoff bound is challenging
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Stochastic unit commitment

Standard unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations?
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Stochastic unit commitment

Standard unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations?

Stochastic unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations, under uncertainty (of demand, prices, renewables...)?
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Stochastic unit commitment

Standard unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations?

Stochastic unit commitment (UC) problem: which thermal generators
should be scheduled to meet power demand, while ensuring feasible
operations, under uncertainty (of demand, prices, renewables...)?

@ Thermal generator operational limits are based on engineering
judgments

@ Can be exceeded in practice, for short periods

@ System operators do run thermal generators beyond these limits
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Stochastic unit commitment

Proposed model
@ Allow thermal generators to “occasionally” violate operational limits
@ Violations should be few (else, increased maintenance costs)

@ Violations should not be large (there are absolute ratings of
generators)

@ 1% savings in energy production is worth ~ $1 billion per year in the
U.S. alone

Bismark Singh (Sandia) Chance-Constrained Optimization March 21, 2019 17 / 40



Stochastic unit commitment

Proposed model |

o Let y£* denote a “non-nominal” operation in hour t for generator g
in scenario w

@ During non-nominal operatlons generator's operating region expands
from [P&, P°] to [P5, P°]

@ Non-nominal mode of generation is more expensive

@ Number of non-nominalities is few:
W D g6 DteT Dweh y&"* < & + almost a chance-constraint!
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We use:

P =(1+B)P°
PE = (1- )P
CE = (14)C8
C&=(1+7y)CH#

WECC240++ system with 85 thermal generators, 50 scenarios and
RTS-GMLC system with 73 thermal generators, 16 scenarios
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Computational results for the RTS-GMLC 16 scenario case

for 10 July 2020.

Under second review: Computational Management Science

Table: MIP gap = 0.1%

€ ] ~v | Cost (M$) | Savings (%) | Time (sec) | MIP gap (%)
0 3.89 0.00% 33 -
00171005 [01 | T38 [ T121% | ¢ 46 T[T T N

0.2 3.84 1.20% 48 -
0.1 0.1 3.83 1.51% 82 -
0.2 3.83 1.50% 106 -
0.05 | 0.05 | 0.1 3.83 1.53% 65 -
0.2 3.83 1.45% 100 -

0.1 0.1 3.81 2.08% 1800 0.22%

0.2 3.82 1.82% 1800 0.15%

@ Increase € = increase savings
@ Increase B = increase savings
@ Increase 7 = decrease savings
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Cost savings for the RTS-GMLC 16 scenario case for 10

July 2020.

Under second review: Computational Management Science

5 B ¥ Optimal | Limited | No nuclear
0.01 | 0.05 | 0.1 1.21% 0.71% 1.06%
0.2 1.20% 0.69% 1.04%
0.1 0.1 1.51% 1.14% 1.15%
0.2 1.50% 1.10% 1.11%
0.05 | 0.05 | 0.1 1.53% 0.70% 1.22%
0.2 1.45% 0.69% 1.15%
0.1 0.1 2.08% 1.14% 1.41%
0.2 1.82% 1.10% 1.28%

Limited = at most one non-nominal operation per generator per day
No nuclear = no non-nominal operation for the nuclear unit in this system
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@ Other CC work
@ An algorithm for a two-stage CC stochastic program
@ Another two-stage CC formulation with Lagrangian relaxations

March 21, 2019
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An algorithm CC stochastic program

Comput Manag Sci (!) CrossMark
https://doi.org/10.1007/s10287-018-0309-x

ORIGINAL PAPER

An adaptive model with joint chance constraints for a
hybrid wind-conventional generator system

Bismark Singh! - David P. Morton® -
Surya Santoso®

Received: 8 September 2017 / Accepted: 19 April 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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Hybrid solar-battery storage system

under review...

A chance-constrained optimization model for day-ahead scheduling of
a hybrid solar-battery storage system

Bismark Singh - David Pozo

Received: date / Accepted: date

ensure reliable operations by using a joint chance constraint. Models
with a few hundred scenarios are relatively tractable: for larger models, we demonstrate how a L
relax

angian

tion scheme provides improved results

Keywords Chance constraints - Stochastic optimization - Solar power - Photovoltaic power station -

Jattery storage
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Public health: Largely from PhD dissertation

BMC Research Notes

Estimation of single-year-of-age @
counts of live births, fetal losses, abortions,
and pregnant women for counties of Texas

Abstract
Objectives: i

Resuits:

Keywords: L
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Public health: Largely from PhD dissertation
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Public health: Largely from PhD dissertation

Equalizing access to pandemic influenza
vaccines through optimal allocation to public
health distribution points
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Also under review...
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Also under review...
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Optimizing over JCCs

uy = 1: failure at t in scenario w
v¥, = 1: failure at t and t’ in scenario w

tt =
xe —yP —wy <MZug Vte T,we
vig Suf, (L) e T t<twel
McCormick envelope { vi,, < ug,V(t,t') € T, t <t ,weQ
VP U +ug —1LY(t ) e T, t<thwe

uf ={0,1},Vt € T, v{y = {0,1},V(t, t')e,we

March 21, 2019
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Computational results: ARMA (large correlation)

Bounding Optimal objective value Time Gap
e constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (3a) 8,351.3 8,351.3 0% 2 3.3%
(3b) 21,282.8 21,282.8 0% 12 59.4%
(4a) 8,351.3 8,365 .8 0.1% 2100 3.3%
(4b) 8,339.6 10,682.1 21.9% 2100 19.2%
(5a) 8,339.7 8,726.7 4.5% 2100 1.1%
(5b) 8,688.9 8,702.1 0.2% 2100 0.8%
0.03 (3a) 8,374.6 8,374.6 0% 2 8.5%
(3b) 22,353.2 22,353.2 0% 14 59.0%
(4a) 8,339.6 8,755.4 4.7% 2100 8.9%
(4b) 8,339.6 13,321.2 37.4% 2100 31.3%
(5a) 9,137.3 9,311.4 1.9% 2100 1.7 %
(5b) 9,074.4 9,252.2 1.9% 2100 1.1%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 8,351.3 and 8,702.1;
true optimal value is 8,634.1

Tightest lower and upper bounds for € = 0.03 are 8,374.6 and 9,252.2; true
optimal value is 9,154.9
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Computational results: Gaussian (weak correlation)

Bounding Optimal objective value Time Gap
e constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (3a) 9,100.8 9,100.8 0% 1 2.7%
(3b) 21,606.6 21,606.6 0% 18 56.7%
(4a) 9,102.0 9,113.3 0.1% 2100 2.7%
(4b) 9092.3 11,365.5 20% 2100 17.7%
(5a) 9,434.3 9,486.3 0.5% 2100 1.4%
(5b) 9,421.5 9,452.3 0.3% 2100 1.1%
0.03 (3a) 9,124.3 9,124.3 0% 2 7.7%
(3b) 22,762.1 22,762.1 0% 21 56.6%
(4a) 9,124.8 9,198.4 0.8% 2100 7.7%
(4b) 9,092.3 13,907.6 34.9% 2100 28.9%
(5a) 9,092.3 10,062.6 9.6% 2100 1.8%
(5b) 9,092.3 10,004.8 9.1% 2100 1.2%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 9,100.8 and 9,449.9;
true optimal value is 9,353.2

Tightest lower and upper bounds for € = 0.03 are 9,124.3 and 10,004.8; true
optimal value is 9,884.0
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Computational results: ARMA (large correlation) with 500

scenarios

Bounding Optimal objective value Time Gap
5 constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (3a) 8,453.4 8,453.4 0% 1 2.9%
(3b) 21,582.9 21,582.9 0% 129 59.7%
(4a) 8,701.0 8,701.0 0% 1717 0%
(4b) 10,462.7 11,318.4 7.5% 2100 23.1%
(5a) 8,348.9 40,116.9 79.2% 2100 78.3%
(5b) 8,348.9 8,772.9 4.8% 2100 0.8%
0.03 (3a) 8,542.5 8,542.5 0% 3 7.3%
(3b) 22,570.6 22,570.6 0% 175 59.2%
(4a) 8,348.9 9,396.1 11.1% 2100 9.4%
(4b) 8,348.9 15,127.8 44.8% 2100 39.1%
(5a) 8,348.9 41,151.4 79.8% 2100 77.6 %
(5b) 8,348.9 9,352.9 10.7% 2100 1.5%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 8,701.0 and 8,772.9;
true optimal value is 8,701.0

Tightest lower and upper bounds for € = 0.03 are 8,542.5 and 9,352.9; true
optimal value is 9,211.3
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Computational results: Gaussian (weak correlation) with

500 scenarios

Bounding Optimal objective value Time Gap
5 constraint | Lower bound  Upper bound MIP gap | (seconds) | from optimal
0.01 (3a) 9,005.1 9,005.1 0% 1 3.7%
(3b) 21,503.7 21,503.7 0% 75 56.5%
(4a) 8866.9 8,889.3 1.3% 2100 5.1%
(4b) 8,866.9 11,071.9 19.9% 2100 15.6%
(5a) 8,866.9 40,126.1 77.9% 2100 76.7%
(5b) 9,343.6 9,390.3 0.5% 2100 0.5%
0.03 (3a) 9,148.2 9,148.2 0% 3 7.4%
(3b) 22,565.4 22,565.4 0% 46 56.2%
(4a) 8,866.9 9,315.3 4.8% 2100 10.2%
(4b) 8,866.9 13,711.9 35.3% 2100 27.9%
(5a) 8,866.9 41,187.8 78.5% 2100 76.0 %
(5b) 8,866.9 9,990.9 11.2% 2100 1.2%

Table: Tightest lower and upper bounds for ¢ = 0.01 are 9,005.1 and 9,390.3;
true optimal value is 9,346.4
Tightest lower and upper bounds for ¢ = 0.03 are 9,148.2 and 9,990.9; true
optimal value is 9,874.1
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Stochastic unit commitment model

Indices and Sets:

Thermal generators.

Hourly time steps: 1, ,T;ie, [a,b) € T X T such that b > a+ UTS.
Piecewise productlon cost mtervals for generator g: 1, g-

Start-up categories for generator g, from hottest (1) to coldest (Sg)-
Scenarios: w1, ..., wpy.

Parameters: First Stage

che

Bismark Si

Marginal cost for piecewise segment / for generator g ($/MWh).

Marginal cost for production above P% ($/MWh).

Marginal cost for production below P8 ($/MWh).

Cost of generator g running and operating at minimum production Eg ($/h).
Start-up cost of category s for generator g ($).

Minimum down time for generator g (h).

Maximum power output for generator g under normal operations (MW).

Maximum power output for generator g under non-nominal operations (MW).
Minimum power output for generator g under normal operations (MW).
Minimum power output for generator g under non-nominal operations (MW).

Maximum power available for piecewise segment / for generator g (MW) (with BYe = P5).
Ramp-down rate for generator g (MW/h).

Ramp-up rate for generator g (MW/h).

Shutdown ramp rate for generator g (MW/h).

Start-up ramp rate for generator g (MW/h).

Time down after which generator g goes cold (h).

Time offline after which the start-up category s is available (h) (with T1€ = DT, 7586 = TC!)
Minimum up time for generator g (h).

(Sandia) Chance-Constrained Optimization March 21, 2019



Stochastic unit commitment model

Parameters: Second Stage

Dy Load (demand) at time t in scenario w (MW).
W;‘) Maximum power from renewables at time t in scenario w (MW).
wy Minimum power from renewables at time t in scenario w (MW).

Variables: First Stage

ug Commitment status of generator g at time t, € {0, 1}.
% Start-up status of generator g at time t, € {0, 1}.
wé Shutdown status of generator g at time t, € {0, 1}.

Indicator arc for shutdown at time t, start-up at time t’, uncommitted for i € [t, t/), for
generator g, € {0,1}, [t, t’) such that t + DTé <t/ < t+ TC& — 1.

et

Variables: Second Stage

f’w Power above minimum from generator g at time t in scenario w (MW).
Pg’w Power above maximum from generator g at time t in scenario w (MW).
Py = Power below minimum from generator g at time t in scenario w (MW).
pl’g’w Power from piecewise interval / for generator g at time t in scenario w (MW).
i Power from renewables at time t in scenario w (MW).
yf’w Non-nominal operation status of generator g at time t in scenario (MW).
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Stochastic unit commitment

gegteT \IeLE

min 37 3 < > E[C/'® pl:&:w | TEPE 4 8 p&w] 4 cRoE 8 4 Ct5U1g>

subject to:

t
>, s
i=t—UT&+1

t

wfglfuf

i=t—DT8+1
t—DTE
g £
S Auyse
t/=t—TCE+1
t+TCE—1
g < wt
My S
t/ =t4+DTE&
S8 -1 t—T5:8
SU.g _ S:g 8 s.8 _ S8 g
=84+ > (C c &) > A
s=1 t/=t—T5tL,841
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vt € [DT®,T], Vg€ g
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Stochastic unit commitment

P8 < (P& — PE)uf — (P® — SUB)VE — (P¥ — SD¥)w§,, vte T,Vg € 67, Vw €Q (92)
v < (P& — P&)uf — (PE — SU®)VE vte T, Vg € ¢l vweQ (9b)
P8 < (P8 — P8)uf — (P& — SDF)wh, vteT,Vge g, vweQ (%)
pEY — pBY < (SUE — RUE — PE)WVE + RUE u§ VteT,Vg €G,VwEQ (9d)
Pt — pfY < (SD® — RDE — PE)WE + RDE US| VteT,Vg €G, Vw€EQ (9e)
= 3 plE VtET,Vg€G, VweEQ (9f)
leLg
ph&w < (Phe —PIT1E)E VteT,Vie L8, VgE€G, VwEQ (9g)
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Stochastic unit commitment

VY < uf = VE — wh, vte T,vg € 671, VweQ (102)

yEY < uf —E vte T,Vg € GH,Vw e Q (10b)

VB < uf — wh, vte T,Vg e Gl vweQ (10¢)

ﬁfvwg(ﬁ_P)y vteT,Vge€g, VweQ (10d)

pPE < (E,p) vVte T,Vg € g, Vw e (10e)
b (pfyw +PEY — PEY 4 PEUE) 41 = DYVEE T, Vw €Q (11)
geg

\QHTHm IRPIREL i

weQgegteT

PPEY € Ry Vte T, Vi€ L8, Vg€ G, Yw € Q (133)
pfv, PeY PEY e Ry VteT,Vge€G,VweER (13b)
me e [wf*“,wg"“} Vt € T,¥ne N,Vw € Q (13¢)
U’i vE, wf € {0,1} vteT,Vgeg (13d)
[t oy € 10,1} vit,t') e X8, Vg€ g (13¢)
v e {0,1} vte T,Vg € G,Vw € Q. (13f)
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Computational results for the WECC240++4- 50 scenario

test case for 11 May 2013.

Table: MIP gap = 0.1%

€ E] ~ | Cost (K$) | Savings (%) | Time (sec) | MIP gap (%)
0 64.41 0.00% 183 -
T0.017| 005 [ 0.1 [ "6420 | T033% | 275 [ - == 77T
0.2 64.21 0.31% 242 -
0.1 0.1 64.03 0.59% 258 ~
0.2 64.04 0.58% 317 -
0.05 | 0.05 | 0.1 63.86 0.85% 275 -
0.2 63.90 0.80% 343 -
0.1 0.1 63.35 1.64% 378 -
0.2 63.42 1.55% 371 -

@ Increase £ = increase savings
@ Increase = increase savings

@ Increase v = decrease savings
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