This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2019- 2750C

From Containerizing Testbeds
for HPC Applications to

Exascale Supercontainers
. g G

PRESENTED BY
Andrew J. Younge

Sandia National Laboratories

- = Sandia National Laboratories is a multimission
a J y o u n g @ S a n d l a ° g 0 v laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract
DE-NA0003525.

Outline

= Motivation
= Why containers in HPC
= Container vision at Sandia w/ Singularity

= |nitial investigation of Singularity on Cray
= Mission HPC apps on production DOE/NNSA clusters
= DOE ECP Supercontainers Project

= Supporting containers at Exascale

= Conclusions & Future Directions

Containers in HPC

BYOE - Bring-Your-Own-Environment

Developers define the operating environment and system libraries in which their
application runs

= Composability
= Developers explicitly define how their software environment is composed of modular
components as container images

= Enable reproducible environments that can potentially span different architectures

= Portability
= Containers can be rebuilt, layered, or shared across multiple different computing systems
Potentially from laptops to clouds to advanced supercomputing resources

= Version Control Integration
= Containers integrate with revision control systems like Git

= Include not only build manifests but also with complete container images using container
registries like Docker Hub

Initial Container Vision

= Support software dev and testing on laptops
= Working builds that can run on supercomputers
= Dev time on supercomputers is extremely expensive
= May also leverage VM/binary translation

= Let developers specify how to build the environment AND the application
= Users just import a container and run on target platform

= Many containers, but can have different code “branches” for arch, compilers, etc.
= Not bound to vendor and sysadmin software release cycles

= Want to manage permutations of architectures and compilers
= x86 & KNL, ARMv8, POWERY, etc.

= Intel, GCC, LLVM

= Performance matters!
= Use HPC to “shake out” container implementations on HPC
= Keep features to support future complete workflows

s | Singularity Containers

= Many different container options ‘
= Docker, Shifter, Singularity, Charliecloud, etc. etc.

= Docker is not good fit for running HPC workloads |
= Security issues, no HPC integration

= Singularity best for current mission needs
= 0SS, publicly available, support backed by Sylabs
= Simple image plan, support for HPC systems
= Docker image support, as well as custom Singularity builds
= Support for multiple architectures (x86, ARM, POWER)
= Large community support

s | Container DevOps =

= Impractical for apps to use large-scale
supercomputers for DevOps and
testing
= HPC resources have long batch queues

Ll

= Dev time commonly delayed as a result AN ol
$ docker pull gitlab.sandia.gov/usr/app1:latest $ singularity pull app1.img
s . $ dock -d -p 12500-13:00 ... 1 A ; .
= Create deployment portability with $ ssh ct1 -C "mpirun -1p X apRy.exe STmb g o e
containers N 7
. Gitlab Container Registry
= Develop Docker containers on your laptop or Service
workstation ‘ v
= Leverage registry services A \
= Separate networks maintain separate $ docker build app1 $ singularity pull app1.img
reqistries $ docker login gitlab.sandia.gov docker:/gitlab.sandia.gov/user/app1:latest
9 $ docker push app1;latest $ aprun -n X singularity exec app1.img app1.exe

= Import to target deployment
= Leverage local resource manager

Singularity on a Cray

= Crays can represent pinnacle of HPC
= 4 of the 10 fastest supercomputers are Cray (Nov 17 Top500)

= Cray systems are different than Linux clusters

= Specialized compute OS, no node-local storage, custom interconnect,
specialized and tuned libraries, etc

» Modified Cray CNL kernel to build in necessary features
= Loop mounting and EXT3 support, soon SquashFS and Overlay
= Create /opt/cray and /var/opt/cray mounts on all images

= Use LD LIBRARY_PATH to link in Cray system software
= XPMEM, CrayMPI, uGNI, etc

How does running Singularity on a Cray compare to Docker on a Cloud?

s | Tale of Two Systems

Volta

Cray XC30 system
NNSA ASC testbed at Sandia

56 nodes:
= 2x Intel "IlvyBridge” E5-2695v2 CPUs
= 24 cores total, 2.4Ghz
= 64GB DDR3 RAM

Cray Aries Interconnect

No local storage, Shared DVS
filesystem

Singularity 2.X

Cray CNL ver. 5.2.UP04

= Based on SUSE 11
= 3.0.101 kernel

32 nodes used to keep equal core count

Amazon EC2

Common public cloud service from AWS

48 c3.8xlarge instances:
= 2x Intel “IlvyBridge” E5-2680 CPUs
= 16 cores total 32 vCPUs (HT), 2.8Ghz
= 10 core chip (2 cores reserved by AWS)
= 60 GB RAM

10 Gb Ethernet network w/ SR-IOV
2x320 SSD EBS storage per node

RHEL7 compute image
= Docker 1.19

Run in dedicated host mode
48 node virtual cluster = $176.64/hour

HPCG VMs and container performance

99.8%
Modified Cray XC testbed to run B o0
Singularity containers 72.9%
Create /opt/cray and
/var/opt/cray on all images 100.00 -
Link in Cray system software .
= XPMEM, CrayMPI, uGNI, etc S
HPCG Benchmark in Container ”
= Compare Singularity on Cray
= Compare KVM on Cray
= Compare Amazon EC2
10.00
48 96 192 384 768
Cores
——Native_CrayMPI KVM_MPICH —-Singularity_CrayMPI
—+-Singularity_IntelMPI —+—AWS_Docker_IntelMPI

Younge et. al, A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds, IEEE CloudCom 2017

Container MPI Performance

IMPI All-Reduce benchmark

Some overhead in dynamic linking
of apps

100000 ¢

= ~1.6us latency 10000
= |ndependent of containers e
o
Large messages hide latency g A0 ¢
S
1 order of magnitude difference E
with Intel MPI g 100 ¢
(O]
2 orders of magnitude difference 5
with Amazon EC2 10 ¢
1
T IR NN AII I SIS EEE
- N un

Message Size (Bytes)
——Native_SLL Native_DLL —-Singularity_CrayMPI
—-Singularity_IntelMPI ——AWS_Docker_IntelMPI

From Testbeds to Production

From Testbeds to Production

= Demonstrated Singularity containers on a Cray XC30

Performance can be near native
Leveraging vendor libraries within a container is critical
Cray MPI on Aries most performant

= Container and library interoperability is key moving forward

Vendor provided base containers desired
Community effort on library ABI compatibility is necessary

= |nitial benchmarks and mini-apps, what about production apps?

Can NNSA mission applications use containers?

Can production/facilities teams build container images?
What are key metrics for success?

How will containers work in “air gapped” environments?

System Description

= SNL Doom:
= CTS-1 HPC platform
= Dual E5-2695 v4 (Broadwell) processors, with AVX2, per node
= 18 cores (36 threads) per processor, 36 cores (72 threads) total per node
= DDR4 2400 MHz/s

= Core base frequency 2.1 GHz, 3.3 GHz max boost frequency
= 32 KiB instruction, 32 KiB data L1 cache per core

= 256 KiB unified (instruction + data) L2 cache per core

= 2.5 MB shared L3, 45 MiB L3 per processor

= 512 GB per node

= Intel Omni-Path HFI Silicon 100 Series (100 Gb/s adapter) for MPI communications

= 4 memory channels per processor (8 per node)

CTS-1 Platform Is Relevant to the Tri-Labs for Production HPC Workloads

y | Problem Description
= SNL Nalu:

= A generalized unstructured massively parallel low Mach flow code

designed to support energy applications of interest [1]
= Distributed on GitHub under 3-Clause BSD License [2]

= Leverages the SNL Sierra Toolkit and Trilinos libraries

= Similar to bulk of SNL Advanced Simulation and Computing (ASC) Integrated Codes
(IC) and Advanced Technology, Development, and Mitigation (ATDM) project
applications

[
]

T
] HH!II’HIHH

= Milestone Simulation:

= Based on “milestoneRun” regression test [3] with 3 successive levels
of uniform mesh refinement (17.2M elem.), 50 fixed time steps, and no
file system output

= Problem used for Trinity Acceptance [4] and demonstrated accordingly
on Trinity HSW [5] and KNL [6], separately, at near-full scale

S. P. Domino, "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc
“NaluCFD/Nalu,” https://github.com/NaluCFD/Nalu, Sep. 2018.

“Nalu/milestoneRun.i at master,” https://github.com/NaluCFD/Nalu/blob/master/reg tests/test files/milestoneRun/milestoneRun.i, Sep. 2018.

A. M. Agelastos and P. T. Lin, “Simulation Information Regarding Sandia National Laboratories’ Trinity Capability Improvement Metric,” Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, Technical report SAND2013-8748, October 2013.

M.Rajan, N.Wichmann, R.Baker, E.W.Draeger, S.Domino, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, and A. Agelastos, “Performance on Trinity (a Cray XC40) with Acceptance Applications and
Benchmarks,” in Proc. Cray User’s Group, 2016.

A. M. Agelastos, M. Rajan, N. Wichmann, R. Baker, S. Domino, E.W. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier, M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and T. Zhu,

“Performance on Trinity Phase 2 (a Cray XC40 utilizing Intel Xeon Phi processors) with Acceptance Applications and Benchmarks,” in Proc. Cray User’s Group, 2017.

s | Performance Testing Description

= Test Characteristics:

= Strong scale problem
= 36 MPI ranks per node
= No threading
= Bind ranks to socket

= Measure the the "mpiexec’ process wall time for both native and container simulations

= Extract the maximum resident set size (MaxRSS) for the "'mpiexec’ process and all of
its sub-processes on the head node for both native and container simulations
= We want to gather all overhead the Singularity container runtime imposes over a native simulation
= The tested methodology for the Singularity container simulation is:
mpiexec -> singularity exec -> bash -> nalu
= Extract the maximum resident set size (MaxRSS) for all of the Nalu MPI processes
across all nodes and compute the “average” MaxRSS for Nalu

= This value is computed for both the native and container simulations so that the former can be subtracted
from the latter to compute the container overhead

= This was extracted via LDPXI using LD PRELOAD to attach to the native and containerized Nalu
processes; LDPXI extracts this via ru maxrss from getrusage () atthe end of the simulation

Wall Time and Memory Are Key Performance Parameters for Production Workloads

s | Build & Environment Description

= Doom Software Stack:
» TOSS 3.3-1 (~RHEL 7.5)
= gnu-7.3.1, OpenMPI 2.1.1
= hwloc-1.11.8

= Container Software Stack:
= CentOS 7.5.1804 (~RHEL 7.5)

= gnu-7.2.0, OpenMPI 2.1.1
= hwloc-1.11.1
= olv-plugin

* Notes:
= Built with Docker, imported into Singularity
= Container image available on Dockerhub

Nalu Dependencies:

o zlib-1.2.11

> bzip2-1.0.6
boost-1.65.0
hdf5-1.8.19
pnetcdf-1.8.1
netcdf-4.4.1
parmetis-4.0.3

(o]

o

O

o

o

o

superlu_dist-5.2.2
superlu-4.3
suitesparse-5.1.0
matio-1.5.9
yaml-cpp-0.5.3

> Trilinos-develop-7c67b929
> Nalu-master-11899aff

o

o

o

o

Open Source Software Stack Enables Greater Collaboration and Testing Across Networks and Systems

17
7,000

6,000

C.
Ul
o
o
o

)

Mean Wall Time (se
w
o
o
o

8

—+—Native

10
No. Nodes

=X=Container

12

Ratio

14

Container vs. Native for Strong Scaling of Nalu Wall Time

16

18

20

1.200
1.150
1.100
1.050
1.000
0.950

0.900

Container Speedup

Younge et. al, (U) Quantifying Metrics to Evaluate Containers for Deployment and Usage of NNSA Production Applications, NECDC 2018

I L | 5

18

16

14

Add'l Mem. per MPI Rank (MB)
a o o = o

N

o

Memory Overhead per MPI Rank with Container

2 4 8 16 20

No. Nodes

m Nalu mBash

s | Nalu Container Analysis

= The container was faster, but used more memory?!

= Dynamic linking of GCC 7.2 in container vs system GCC 4.8 Memory usage

= Memory differences: gfortran & stdlibc++ libraries
= GCC 7.2 libs much larger, ~18MB total

= Performance differences: OpenMPI libs
= Container's OpenMPI w/ GCC7 provides usempif08 in OpenMPI
= usempif08 includes MPI3 optimizations vs MPI2 with usempi

= Position Independent Code (-fPIC) used throughout container compiles
= Provides larger .GOT in memory, but often slightly improved performance on x86 64

= Overhead with using bash in container to load LD LIBRARY_PATH before exec

= Constant but small, depends on .bashrc file

Demonstrates both the power and pitfalls of building your own HPC application environment in containers

0 A 2.3 PFLOPs peak
>5000 TX2 CPUs, ~150k cores
885 TB/s memory bandwidth peak
332 TB memory

1.2 MW

1 | Containers on Secure Networks

= Containers are primarily built on unclassified systems then moved to “air
gapped” networks via automated transfers

= Cybersecurity approvals in place to run containers on all networks
= Security controls used in running containers on HPC systems
= Automated Transfer Services to air gapped networks

= Challenges of automated transfers
= Size — 5GB-10GB are ideal
= Integrity — md5 is enough
= Availability — who are you competing against?
= Transfer policies — executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks

Towards the DOE

ECP Supercontainer Project

Supercontainers

:
= Containers have gained significant interest throughout
the ECP
= There exists several container runtimes for HPC today Q: What is the ECP?
= Shifter, Singularity, Charliecloud A: The Exascale Computing Project (ECP)

is focused on accelerating the delivery of a

= Diversity is good! .
capable exascale computing ecosystem

= Containers can provide greater software flexibility, that delivers 50 times more computational
reliability, ease of deployment, and portability science and data analytic application
power than possible with DOE HPC systems
= Several likely challenges to containers at Exascale: such as Titan (ORNL) and Sequoia (LLNL).

= Scalability With the goal to launch a US Exascale
ecosystem by 2021, the ECP will have

= Resource n?e.magement profound effects on the American people
= Interoperability and the world.

= Security |

= Further integration with HPC (batch jobs, Lustre, etc) The ECP is a collaborative effort of two
| U.S. Department of Energy organizations -

.0} , s AN 178 the Office of Science (DOE-SC) and the
< | National Nuclear Security Administration
s = |
SHIFTER \J Charliecloud (NNSA).

ECP Supercontainers Project

Join effort across Sandia, LANL, LBNL, LLNL, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across the DOE
Enable container deployments from laptops to Exascale

Help ECP applications and facilities leverage containers most efficiently

Three-fold approach to achieve success:
= Scalable R&D activities

= Will containers work @ Exascale
= Performance studies

= Collaboration with related ST and interested AD projects
= Integration with Spack
= Developer deep-dive sessions
= CI/CD pipeline with DOE Gitlab

= Training, Education, and Support

Sy \
Activities conducted in the context of interoperability | |
= Portable solutions | |
= Containerized ECP that runs on Astra, A21, El-Capitan, ... |
= Work for multiple container implementations ' \ ol o

= Not picking a “winner” container runtime
= Multiple DOE facilities at multiple scales

Conclusion

= Containers have taken hold in HPC

= Singularity runtime has demonstrated value in testbeds and production
DOE/NNSA workloads

= Performance is near-native
= MPI ABI compatibility is key
= Multiple architecture support

= ECP Supercontainers
= Performance must be validated at scale
= Interoperability is important
= Exascale software stack

Future Directions in Containers

Containers must work at Exascale
= DOE ECP efforts are depending on it

= Embrace architectural diversity
= Containerized CI/CD pipeline with Gitlab

= Build-time optimizations
= Entire ECP software stack in container
= Multi-stage builds
= Spack & pkg mgmt orchestration

g
Further integration with larger community needed],
= Decrease reliance on MPI ABI compatibility
= Vendor support for base containers images
= Foster standards that increase reliability and
= Reproducibility? Qo o LA g

Thanks!

ajyoung@sandia.gov

14th Workshop on Virtualization in High-Performance Cloud
Computing (VHPC'19) @ISC19 in Frankfurt, DE

Papers due April 19th - vhpc.org

Students, Postdocs, Collaborators...

sapl|S dnyjdoeg

» | Yanguard-Astra Compute Node Building Block

Q redhat

Hewlett Packard
Enterprise

= Dual socket Cavium Thunder-X2
= CN99xx
= 28 cores @ 2.0 GHz

HPE Apollo 70

= 8 DDR4 controllers per socket -~ 0 1 2
- One 8 GB DDR4-2666 dual-rank | T SRS
DIMM per controller gl

= Mellanox EDR InfiniBand
ConnectX-5 VPI OCP

= Tri-Lab Operating System Stack
based on RedHat 7.5+

| Astra — the First Petscale Arm based Supercomputer

HPE Apollo 70 Chassis: 4 nodes 36 compute racks
N — (9 scalable units, each 4 racks)

: -, 2592 compute nodes
= LT (5184 TX2 processors)

3 IB spine switches
(each 540-port)

18 chassis/rack

72 nodes/rack
WANGUARD

Astra

3 IB switches/rack
(one 36-port switch
per 6 chassis)

Sandia has a history with Arm - NNSA/ASC testbeds

2014 2017 2018

Hammer Sullivan Mayer Vanguard/Astra

Applied Micro Cavium ThunderX1 Pre-GA Cavium HPE Apollo 70
X-Gene-1 32 nodes ThunderX2 Cavium ThunderX2
47 nodes 47 nodes 2592 nodes

Advanced Trilab Software Environment (ATSE)

—
= Advanced Tri-lab Software Environment Ereroiackard
= Sandia leading development with input from Tri-lab Arm team -
m i i i jonal
Provide a user programming environment for Astra ﬂ'l O
= Partnership across the NNSA/ASC Labs and with HPE ,
M Lawrence Livermore
i —4 National Laboratory
= Lasting value for Vanguard effort
= Documented specification of: . Los Alamos
= Software components needed for HPC production applications S
= How they are configured (i.e., what features and capabilities are enabled) and interact |

= User interfaces and conventions

= Reference implementation:
= Deployable on multiple ASC systems and architectures with common look and feel
= Tested against real ASC workloads
= Community inspired, focused and supported
= Leveraging OpenHPC effort CEEEBEEBENE

o Wl el o e f sl s B o s

' ' 5 1- I T L LY T

ATSE is an integrated software environment for ASC workloads

Supercontainer Collaboration

= Interface with key ST and AD development areas

= Advise and support the container usage models necessary for deploying
first Exascale apps and ecosystems

= |nitiate deep-dive sessions with interested AD groups
= ExaLEARN or CANDLE good first targets

= Activities which can best benefit from container runtimes

= Develop advanced container DevOps models
= Work with DOE Gitlab Cl team to integrate containers into current Cl plan
= Leverage Spack to enable advanced multi-stage container builds

= Integrate with ECP SDK effort to provide optimized container builds which benefit
multiple AD efforts

Scalable R&D Activities

= Several Topics:
= Container and job launch, including integration with resource managers
= Distribution of images at scale
= Use of storage resources (parallel file systems, burst buffers, on-node storage)
= Efficient and portable MPl communications, even for proprietary networks
= Accelerators e.g. GPUs

= Integration with novel hardware and systems software associated with pre-Exascale
and Exascale platforms

= Activities conducted in the context of interoperability
= Portable solutions
= Work for multiple container implementations
= Multiple facilities at multiple scales

Future Integration

= For project to be successful, need to provide support for deploying
container runtimes at individual facilities

= Facilities Integration ideas:
= Help integrate with facilities on pre-Exa and Exa machine deployments

= Include systems level support for efficient configuration, and interoperability across
ECP

= Demonstrate exemplar ECP application deployed with containers at scale
= Work with HPC vendors today to ensure designs meet container criteria
= Support upstream container projects when applicable (Docker, Singularity)

Training Education & Support

= Containers are a new SW mechanism, training and education is needed
to help ECP community to best utilize new functionality

= Reports:
= Best Practices for building and using containers
= Taxonomy survey to survey current state of the practice

= Training activities:
= Run tutorial sessions at prominent venues

= ISC, SC, and ECP annual meetings
= Already have several activities underway

= Online training and outreach sessions

= Provide single source of knowledge for groups interested in containers

