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Containers in HPC

BYOE - Bring-Your-Own-Environment
Developers define the operating environment and system libraries in which their
application runs

Composability
Developers explicitly define how their software environment is composed of modular
components as container images
Enable reproducible environments that can potentially span different architectures

Portability
Containers can be rebuilt, layered, or shared across multiple different computing systems
Potentially from laptops to clouds to advanced supercomputing resources

Version Control Integration
Containers integrate with revision control systems like Git
Include not only build manifests but also with complete container images using container
registries like Docker Hub



Initial Container Vision

Support software dev and testing on laptops
Working builds that can run on supercomputers
Dev time on supercomputers is extremely expensive
May also leverage VM/binary translation

Let developers specify how to build the environment AND the application
Users just import a container and run on target platform
Many containers, but can have different code "branches" for arch, compilers, etc.
Not bound to vendor and sysadmin software release cycles

Want to manage permutations of architectures and compilers
x86 & KNL, ARMv8, POWER9, etc.
Intel, GCC, LLVM

Performance matters!
Use HPC to "shake out" container implementations on HPC
Keep features to support future complete workflows



5 Singularity Containers

Many different container options
Docker, Shifter, Singularity, Charliecloud, etc. etc.

Docker is not good fit for running HPC workloads
Security issues, no HPC integration

Singularity best for current mission needs
OSS, publicly available, support backed by Sylabs

Simple image plan, support for HPC systems

Docker image support, as well as custom Singularity builds

Support for multiple architectures (x86, ARM, POWER)

Large community support

•
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Container DevOps

Impractical for apps to use large-scale
supercomputers for DevOps and mazon EC2

testing
HPC resources have long batch queues
Dev time commonly delayed as a result 
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$ docker pull gitlab.sandia.gov/usr/app1:latest

141101.*.'

$ singularity pull appl .img
$ docker run -d -p 12500-13:00 ... appl docker://gitlab.sandia.gov/user/app1:latest
$ ssh ctl -C "mpirun -np X app1.exe $ 

•
qsub71.pbsCreate deployment portability with

containers
Develop Docker containers on your laptop or
workstation
Leverage registry services
Separate networks maintain separate
registries
Import to target deployment
Leverage local resource manager

$ docker build appl
$ docker login gitlab.sandia.gov
$ docker push appl:latest

CTS Cluster

Gitlab Container Registr
Sen ice

$ singularity pull appl .img
docker://gitlab.sandia.gov/user/app1:latest
$ aprun -n X singularity exec appl .img appl .exe
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Singularity on a Cray

• Crays can represent pinnacle of HPC
• 4 of the 10 fastest supercomputers are Cray (Nov 17 Top500)

• Cray systems are different than Linux clusters
• Specialized compute OS, no node-local storage, custom interconnect,

specialized and tuned libraries, etc

• Modified Cray CNL kernel to build in necessary features
• Loop mounting and EXT3 support, soon SquashFS and Overlay

• Create /opt/cray and /var/opt/cray mounts on all images
• Use LD_LIBRARY_PATH to link in Cray system software

• XPMEM, CrayMPl, uGNI, etc

How does running Singularity on a Cray compare to Docker on a Cloud?



8 Tale of Two Systems

Volta 

• Cray XC30 system
• NNSAASC testbed at Sandia
• 56 nodes:

• 2x Intel "IvyBridge" E5-2695v2 CPUs
• 24 cores total, 2.4Ghz
• 64GB DDR3 RAM

• Cray Aries Interconnect
• No local storage, Shared DVS

filesystem
• Singularity 2.X
• Cray CNL ver. 5.2.U1304

• Based on SUSE 11
• 3.0.101 kernel

• 32 nodes used to keep equal core count

Amazon EC2 

• Common public cloud service from AWS

• 48 c3.8xlarge instances:
• 2x Intel "IvyBridge" E5-2680 CPUs

• 16 cores total 32 vCPUs (HT), 2.8Ghz

• 10 core chip (2 cores reserved by AWS)

• 60 GB RAM

• 10 Gb Ethernet network w/ SR-IOV

• 2x320 SSD EBS storage per node

• RHEL7 compute image
• Docker 1.19

• Run in dedicated host mode

• 48 node virtual cluster = $176.64/hour



HPCG VMs and container performance

• Modified Cray XC testbed to run
Singularity containers

• Create /o-ot/cray and
/var/o-ot/cray on all images 100.00

• Link in Cray system software
• XPMEM, CrayMPl, uGNI, etc

16-
• HPCG Benchmark in Container

• Compare Singularity on Cray

• Compare KVM on Cray

• Compare Amazon EC2

10.00

48

Native CrayMPI

Singularity_InteIMPI

96 192
Cores

KVM MPICH

AWS Docker InteIMPI

384

99.8%
89.3%
81.9%
72.9%

768

Singularity_CrayMPI

Younge et. al, A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds, IEEE CloudCom 2017



Container MPI Performance
• IMPI All-Reduce benchmark

• Some overhead in dynamic linking
of apps
• -1.6us latency

• Independent of containers

• Large messages hide latency

• 1 order of magnitude difference
with Intel MPI

• 2 orders of magnitude difference
with Amazon EC2
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From Testbeds to Production



From Testbeds to Production

• Demonstrated Singularity containers on a Cray XC30
• Performance can be near native

Leveraging vendor libraries within a container is critical

Cray MPI on Aries most performant

• Container and library interoperability is key moving forward
• Vendor provided base containers desired
• Community effort on library ABI compatibility is necessary

• Initial benchmarks and mini-apps, what about production apps?
• Can NNSA mission applications use containers?
• Can production/facilities teams build container images?
• What are key metrics for success?
• How will containers work in "air gapped" environments?



13 System Description

SNL Doom:
CTS-1 HPC platform

Dual E5-2695 v4 (Broadwell) processors, with AVX2, per node

18 cores (36 threads) per processor, 36 cores (72 threads) total per node

Core base frequency 2.1 GHz, 3.3 GHz max boost frequency

32 KiB instruction, 32 KiB data L1 cache per core

256 KiB unified (instruction + data) L2 cache per core

2.5 MB shared L3, 45 MiB L3 per processor

4 memory channels per processor (8 per node)

DDR4 2400 MHz/s

512 GB per node

Intel Omni-Path HFI Silicon 100 Series (100 Gb/s adapter) for MPI communications

°QM
CTS-1 Platform Is Relevant to the Tri-Labs for Production HPC Workloads



Problem Description

SNL Nalu:
A generalized unstructured massively parallel low Mach flow code
designed to support energy applications of interest [1]

Distributed on GitHub under 3-Clause BSD License [2]

Leverages the SNL Sierra Toolkit and Trilinos libraries
Similar to bulk of SNL Advanced Simulation and Computing (ASC) Integrated Codes
(IC) and Advanced Technology, Development, and Mitigation (ATDM) project
applications

Milestone Simulation:
Based on "milestoneRun" regression test [3] with 3 successive levels
of uniform mesh refinement (17.2M elem.), 50 fixed time steps, and no
file system output

Problem used for Trinity Acceptance [4] and demonstrated accordingly
on Trinity HSW [5] and KNL [6], separately, at near-full scale
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1. S. P. Domino, "Sierra Low Mach Module: Nalu Theory Manual 1.0", SAND2015-3107W, Sandia National Laboratories Unclassified Unlimited Release (UUR), 2015. https://github.com/NaluCFD/NaluDoc 

2. "NaluCFD/Nalu," https://github.com/NaluCFD/Nalu, Sep. 2018.

3 "Nalu/milestoneRun.i at master," https://github.com/NaluCFD/Nalu/blob/master/reg tests/test files/milestoneRun/milestoneRun.i, Sep. 2018.

4 A. M. Agelastos and P. T. Lin, "Simulation Information Regarding Sandia National Laboratories' Trinity Capability Improvement Metric," Sandia National Laboratories, Albuquerque, New Mexico 87185 and
Livermore, California 94550, Technical report SAND2013-8748, October 2013.

5. M.Rajan, N.Wichmann, R.Baker, E.W.Draeger, S.Domino, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, and A. Agelastos, "Performance on Trinity (a Cray XC40) with Acceptance Applications and
Benchmarks," in Proc. Cray User's Group, 2016.

A. M. Agelastos, M. Rajan, N. Wichmann, R. Baker, S. Domino, E.W. Draeger, S. Anderson, J. Balma, S. Behling, M. Berry, P. Carrier, M. Davis, K. McMahon, D. Sandness, K. Thomas, S. Warren, and T. Zhu,
"Performance on Trinity Phase 2 (a Cray XC40 utilizing Intel Xeon Phi processors) with Acceptance Applications and Benchmarks," in Proc. Cray User's Group, 2017.



15 Performance Testing Description
Test Characteristics:
Strong scale problem
36 MPI ranks per node

No threading

Bind ranks to socket

Measure the the ‘mpiexec‘ process wall time for both native and container simulations

Extract the maximum resident set size (MaxRSS) for the ‘mpiexec‘ process and all of
its sub-processes on the head node for both native and container simulations
We want to gather all overhead the Singularity container runtime imposes over a native simulation

The tested methodology for the Singularity container simulation is:

mpiexec -> singularity exec -> bash -> nalu

Extract the maximum resident set size (MaxRSS) for all of the Nalu MPI processes
across all nodes and compute the "average" MaxRSS for Nalu
This value is computed for both the native and container simulations so that the former can be subtracted
from the latter to compute the container overhead

This was extracted via LDPXI using LD_PRELOAD to attach to the native and containerized Nalu
processes; LDPXI extracts this via ru maxrss from getrusage ( ) at the end of the simulation

Wall Time and Memory Are Key Performance Parameters for Production Workloads



16 Build & Environment Description

Doom Software Stack:
TOSS 3.3-1 (—RHEL 7.5)
gnu-7.3.1, OpenMPl 2.1.1
hwloc-1.11.8

Container Software Stack:
CentOS 7.5.1804 (—RHEL 7.5)
gnu-7.2.0, OpenMPl 2.1.1
hwloc-1.11.1
olv-plugin

Notes:
Built with Docker, imported into Singularity
Container image available on Dockerhub

Nalu Dependencies:
O zlib-1.2.11

O bzip2-1.0.6

boost-1.65.0

O hdf5-1.8.19

O pnetcdf-1.8.1

netcdf-4.4.1

parmetis-4.0.3

O superlu_dist-5.2.2

O superlu-4.3

suitesparse-5.1.0

O matio-1.5.9

O yaml-cpp-0.5.3

Trilinos-develop-7c67b929

Nalu-master-11899aff

Open Source Software Stack Enables Greater Collaboration and Testing Across Networks and Systems
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18 Memory Overhead per MPI Rank with Container
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19 Nalu Container Analysis

The container was faster, but used more memory?!

Dynamic linking of GCC 7.2 in container vs system GCC 4.8 Memory usage
Memory differences: gfortran & stdlibc++ libraries
GCC 7.2 libs much larger, -18MB total

Performance differences: OpenMPl libs
Container's OpenMPl w/ GCC7 provides usempif08 in OpenMPl

usempif08 includes MPI3 optimizations vs MPI2 with usempi

Position Independent Code (-fPIC) used throughout container compiles
Provides larger .GOT in memory, but often slightly improved performance on x86_64

Overhead with using bash in container to load LD_LIBRARY_PATH before exec
Constant but small, depends on .bashrc file

Demonstrates both the power and pitfalls of building your own HPC application environment in containers
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'M SUPERCOMPUTER

*lk 2.3 PFLOPs peak
>5000 TX2 CPUs, -150k cores

885 TB/s memory bandwidth peak
332 TB memory

1.2 MW



21 Containers on Secure Networks

Containers are primarily built on unclassified systems then moved to "air
gapped" networks via automated transfers

Cybersecurity approvals in place to run containers on all networks

Security controls used in running containers on HPC systems

Automated Transfer Services to air gapped networks

Challenges of automated transfers
Size — 5GB-1OGB are ideal

Integrity — md5 is enough

Availability — who are you competing against?

Transfer policies — executables, code, etc.

Containers will fully work with automated transfers for use in air gapped networks



Towards the DOE
ECP Supercontainer Project

E(C)1=
EXPIECRLE COMPUTING PROLIECT



Supercontainers
Containers have gained significant interest throughout
the ECP

There exists several container runtimes for HPC today
Shifter, Singularity, Charliecloud

Diversity is good!

Containers can provide greater software flexibility,
reliability, ease of deployment, and portability

Several likely challenges to containers at Exascale:
Scalability

Resource management

lnteroperability

Security

Further integration with HPC (batch jobs, Lustre, etc)

4h
W

SHIFTER Charliecloud

Q: What is the ECP?
A: The Exascale Computing Project (ECP)
is focused on accelerating the delivery of a 1
capable exascale computing ecosystem
that delivers 50 times more computational
science and data analytic application
power than possible with DOE HPC systems
such as Titan (ORNL) and Sequoia (LLNL).
With the goal to launch a US Exascale
ecosystem by 2021, the ECP will have
profound effects on the American people
and the world.

The ECP is a collaborative effort of two
U.S. Department of Energy organizations -
the Office of Science (DOE-SC) and the
National Nuclear Security Administration
(NNSA).

1



ECP Supercontainers Project

Join effort across Sandia, LANL, LBNL, LLNL, U. of Oregon

Ensure container runtimes will be scalable, interoperable, and well integrated across the DOE

Enable container deployments from laptops to Exascale

Help ECP applications and facilities leverage containers most efficiently

Three-fold approach to achieve success:
Scalable R&D activities

Will containers work @ Exascale

Performance studies

Collaboration with related ST and interested AD projects
• Integration with Spack

• Developer deep-dive sessions

- Cl/CD pipeline with DOE Gitlab

Training, Education, and Support

Activities conducted in the context of interoperability
Portable solutions

Containerized ECP that runs on Astra, A21, EI-Capitan,

Work for multiple container implementations
Not picking a "winner' container runtime

Multiple DOE facilities at multiple scales

1

EXRSCRLE COMPUTING PROJECT



Conclusion

Containers have taken hold in HPC

Singularity runtime has demonstrated value in testbeds and production
DOE/N NSA workloads
Performance is near-native

■ MPI ABI compatibility is key

r Multiple architecture support

ECP Supercontainers
Performance must be validated at scale

lnteroperability is important

Exascale software stack



Future Directions in Containers

Containers must work at Exascale
DOE ECP efforts are depending on it
Embrace architectural diversity

Containerized Cl/CD pipeline with Gitlab

Build-time optimizations
Entire ECP software stack in container
Multi-stage builds
Spack & pkg mgmt orchestration

Further integration with larger community needed
Decrease reliance on MPI ABI compatibility
Vendor support for base containers images
Foster standards that increase reliability and

Reproducibility?
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Thanks!
ajyoung@sandia.gov

14th Workshop on Virtualization in High-Performance Cloud
Computing (VHPC'19) @ISC19 in Frankfurt, DE

Papers due April 19th - vhpc.org

Students, Postdocs, Collaborators...
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29 Vanguard-Astra Compute Node Building Block

HewLett Packard
Enterprise

Dual socket Cavium Thunder-X2
CN99xx
28 cores @ 2.0 GHz

8 DDR4 controllers per socket

One 8 GB DDR4-2666 dual-rank
DIMM per controller

Mellanox EDR InfiniBand
ConnectX-5 VPI OCP

Tri-Lab Operating System Stack
based on RedHat 7.5+

arm CAVIUM
TECHNOLOGIES 04 red hat

HPE Apollo 70
Cavium TX2 Node



Astra the First Petscale Arm based Supercomputer

HPE Apollo 70 Chassis: 4 nodes

•

HPE Apollo 70 Rack

18 chassis/rack

72 nodes/rack

3 I B switches/rack
(one 36-port switch

per 6 chassis)

 ►

36 compute racks
(9 scalable units, each 4 racks)

2592 compute nodes
(5184 TX2 processors)

3 IB spine switches
(each 540-port)

TANGUARD
Astra



Sandia has a history with Arm - NNSA/ASC testbeds

2014

Hammer

Applied Micro
X-Gene-1
47 nodes

Sullivan

Cavium ThunderXl
32 nodes

2017
—N

Hewlett Paths
Enterprise 

Mayer

Pre-GA Cavium
ThunderX2
47 nodes

2018

ewlett Pad®
nte • rise

Vanguard/Astra

HPE Apollo 70
Cavium ThunderX2

2592 nodes



Advanced Trilab Software Environment (ATSE)

Advanced Tri-lab Software Environment
Sandia leading development with input from Tri-lab Arm team

Provide a user programming environment for Astra

Partnership across the NNSA/ASC Labs and with HPE

Lasting value for Vanguard effort
Documented specification of:
Software components needed for HPC production applications

How they are configured (i.e., what features and capabilities are enabled) and interact

User interfaces and conventions

Reference implementation:
Deployable on multiple ASC systems and architectures with common look and feel

Tested against real ASC workloads

Community inspired, focused and supported

Leveraging OpenHPC effort tl.11= f 11:61:If

Hewlett Packard
Enterprise

Sandia
National
Laboratories

Lawrence Livermore
LA National Laboratory

!-A5),A,191M

ATSE is an integrated software environment for ASC workloads



Supercontainer Collaboration

Interface with key ST and AD development areas

Advise and support the container usage models necessary for deploying
first Exascale apps and ecosystems

Initiate deep-dive sessions with interested AD groups
ExaLEARN or CANDLE good first targets

Activities which can best benefit from container runtimes

Develop advanced container DevOps models
Work with DOE Gitlab CI team to integrate containers into current CI plan

Leverage Spack to enable advanced multi-stage container builds

Integrate with ECP SDK effort to provide optimized container builds which benefit
multiple AD efforts



Scalable R&D Activities

Several Topics:
Container and job launch, including integration with resource managers

Distribution of images at scale

Use of storage resources (parallel file systems, burst buffers, on-node storage)

Efficient and portable MPI communications, even for proprietary networks

Accelerators e.g. GPUs

Integration with novel hardware and systems software associated with pre-Exascale
and Exascale platforms

Activities conducted in the context of interoperability
Portable solutions

Work for multiple container implementations

Multiple facilities at multiple scales



Future Integration

For project to be successful, need to provide support for deploying
container runtimes at individual facilities

Facilities Integration ideas:
Help integrate with facilities on pre-Exa and Exa machine deployments

Include systems level support for efficient configuration, and interoperability across
ECP

Demonstrate exemplar ECP application deployed with containers at scale

Work with HPC vendors today to ensure designs meet container criteria

Support upstream container projects when applicable (Docker, Singularity)



Training Education & Support

Containers are a new SW mechanism, training and education is needed
to help ECP community to best utilize new functionality

Reports:
Best Practices for building and using containers

Taxonomy survey to survey current state of the practice

Training activities:
Run tutorial sessions at prominent venues
ISC, SC, and ECP annual meetings

Already have several activities underway

Online training and outreach sessions

Provide single source of knowledge for groups interested in containers


