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High Fidelity Design
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DES and LES are needed to capture key physics in a number of important
aerospace applications.
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Adjoint Sensitivity Analysis of High Fidelity
Simulations
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Types of Sensitivity Analysis

Tangent: sensitivity of many
objectives to one input parameter

Adjoint: sensitivity of one
objective to many input
parameters

Gradient-based Design
Optimization

• Error Estimation

• Mesh Adaptation

• Uncertainty Quantification

Systems with unsteady flows have
many important objective functions
that are time averaged

* Conventional sensitivity analysis fails for these objectives in

high fidelity simulations, which exhibit chaotic dynamics
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Sensitivity Analysis
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Conventional Adjoint for DNS
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DNS for T106C Turbine Blade (Garai & Diosady)

Objective is axial force

Velocity
Magnitude
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Adjoint grows exponentially due to chaotic dynamics



Adjoint-Basea

Governing Equations:
du

f (u)
dt

Error estimate using dual-
weighted residual method
(Becker & Rannacher
1995)

c J (u) — J(uH) rr 
dt

Local Error Estimate

Ek(t)

f h(u H) rtP h) dt

/ du H 

dt f h(u (t)) Ohl K(t))

Unbound adjoint not useful for error estimation

Estimate is orders of magnitude larger than actual state

Error localization just shows where adjoint magnitude is large
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Failure of conventional sensitivity analysis
for chaos
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Lorenz 63 System

L Objective z: rate of heat transfer

• Input p: temperature difference



Failure of conventional sensitivity analysis
for chaos
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Sensitivity analysis approaches for
chaotic systems
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1. Ensemble Adjoint Method

Lea et al. 2000, Eyink et al. 2004.

2. Fokker-Planck Methods

Thuburn et al. 2005., Blonigan and Wang 2014

3. Fluctuation-Dissipation Theorem

Leith 1975, Abramov and Majda 2007

4. Least Squares Shadowing (LSS)

Wang, Hui, and Blonigan 2014

5. Unstable Periodic Orbits

Lasagna 2017

6. Added-Dissipation methods

Talnikar and Wang 2015, Bhatia and Makhija
2019, Ashley and Hicken 2019, ...

2. Fokker-Planck computed stationary density (left) 4. LSS reference and
and its adjoint (right). shadow trajectories.
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Sensitivity analysis with shadowing
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Conventional Objective Surface
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Least Squares Shadowing

• Assume ergodicity, replace initial
condition for u(t) with 30
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Shadowing Objective Surface
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• Decompose tangent: v(t) = -1-4,(t)cei + rVi(t), t c [ti_i,ti]
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Non-Intrusive Least Squares Shadowing
Optimization Problem
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• KKT System: (# of modes) X (it of segment.'

Number of modes needed is (much) smaller than spatial DoFs



Algorithm Summary

I v(01

• Tangent NILSS

A Segment 1

1

1. On each segment:

• Compute Primal, u(t)

• Compute homogeneous Tangents using
previous segment's Q matrix columns as
ICs

• Compute inhomogeneous Tangent using
previous segment's projected tangent as IC

• Compute contributions of tangents to
sensitivities

• QR of final homogeneous Tangents, store
Q and R for Iater.

• Project inhomogeneous Tangent onto
complement of Q matrix, store for later

2. Form KKT system and solve.

3. Compute sensitivities.

Segment 2 Segment 3

1

t2

• Adjoint NILSS

1. On each segment:

• Compute Primal, u(t)

Sandia
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• Compute homogeneous Tangents using
previous segment's Q matrix columns as lCs

• Compute contributions of tangents to
sensitivities

• QR of final homogeneous Tangents, store Q
and R for later.

2. Form adjoint KKT system and solve.

3. On each segment, starting with final
segment:

• Solve adjoint equation with terminal
condition specified from KKT solution,
next segment.

4. Compute sensitivities.



Least squares shadowing for Lorenz 63
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Minimum Turbulent Flow Unit

Smallest channel that can sustain turbulent
flow (Jimenez and Moin, 1991).

Very good agreement with turbulent channel
statistics below y±=40

Current study replicates a case in the original
paper

Re=3000, ReT=140

Channel size=nhx2hx0.34nh

Flow Solver: ev,iti

Discontinuous Galerkin Spectral Element
Method (DGSEM) framework

Space-time DG discretization

Entropy stable flux of Ismail and Roe

Mesh: 32x128x16 Degrees of Freedom

Objective: Kinetic Energy
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NILSS computational cost

Cost of NILSS scales with the
number of modes, m:

One tangent solution is required
for each mode.

Solving the tangent equations
dominates the cost.

m is at least the number of unstable
modes.

Minimal Channel, m 150

ReT=180 channel flow, m 1,500

T106C turbine blade, m z• 350
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NILSS Sensitivity
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• NILSS run with 160 modes, 400 time segments.

• Objective function is volume-integrated kinetic energy

• Sensitivity to ReT computed

• Slow convergence of sensitivity due to long time scales present in flow unit
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NILSS Adjoint Field

Turbulent Burst
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Shadowing adjoint does not exhibit
exponential growth

Adjoint provides physical insights

Largest adjoint magnitudes occur before
bursts of turbulence indicated by wall
shear stress T.
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Flow Unit Adjoint Field

Q-Criterion isosurfaces Adjoint X-momentum
colored by x-momentum

li rnl- --
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Walls colored by shear

force Magnitude

isocontours for ±2.0

40,

Integrated kinetic energy adjoint shows when and where flow is most
susceptible to flow instabilities
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Dual Weighted Residual with Shadowing

Minimal Flow unit with p=4 mesh:

16x64x8 Degrees of Freedom

Error estimate using dual-weighted residual
method (Becker & Rannacher 1 995)

J(u) (U11) rr

f

t

t_k

o

Run NILSS on enriched basis (p=8),
linearizing about injected primal:

dq fh 
Vh

dt Otth UH

duH
1  J H ) "(Ph

dt

d'Oh fh T

„ Adt OUti " ux

Enrichment in space only! (Krakos 2015)

P=1 60 modes for shadowing.

Adjoint magnitude bounded.

Error localization differs from adjoint,
unlike conventional adjoint.

Error particularly high at burst event.

t
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clow Unit Error Estimate

Error estimate remains bounded.

Largest errors near certain
structu res/events.

Space-time adaptation?

Butterfly effect?

Changes to mesh = changes to
dynamics?

Adapt to fixed mesh using statistics?

u.6
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Localized Error Estimate and Adjoint
Adj. x-mumentum
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'°eme Event Prediction

Mean behavior vs. extreme behavior

Example: turbulent burst event in
channel

Adapted approach of Farazmand
and Sapsis:

max [E(u(T) /quo)]
up EU

du
Constraints:

dt 
— f (u) , u(0) = uo

u0 EACU

Angle between state and precusor
predicts onset of extreme even

More details this afternoon in MS287

Other approaches in our second
session, MS302
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State Space: U
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Conventional sensitivity analysis approaches fail for chaotic dynamical
systems such as scale-resolving turbulent flow simulations

Shadowing-based sensitivity analysis is a promising approach for chaotic
systems

Non-Intrusive LSS can compute useful sensitivities

Cost scales with the number of positive Lyapunov exponents

Shadowing adjoint provides valuable physical insights into turbulent flows,
highlights local space-time errors.

Conventional adjoints can also be used in a gradient-based optimizer to
predict extreme events in lightly turbulent flows.
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We have job openings at Sandia National Laboratories in Livermore, California
in the areas of reduced-order modeling, scientific machine learning, high-
performance computing, and uncertainty quantification.

Postdoctoral position: sandia.gov/careers, Job # 665436

Candidates *are not required* to have the ability to obtain a U.S. Department
of Energy security clearance.

Staff position: sandia.gov/careers, Job # 665417

Candidates *are required* to have the ability to obtain a U.S. Department of
Energy security clearance, which in turn requires U.S. citizenship.

Please contact me (pblonig@sandia.gov) or Kevin Carlberg
(ktcarlb@sandia.gov) if you have any questions!

Also:

Postdoctoral position in Compressible CFD in Albuquerque, New Mexico.

Postdoctoral position: sandia.gov/careers, Job # 664661

Candidates *are required* to have the ability to obtain a U.S. Department of
Energy security clearance, which in turn requires U.S. citizenship.
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Lyapunov Analysis

du
• Phase Space for system

Uniform
Perturbations

dt
f (u, s)

Trajectory for Ou/Ot = f (u; s)

Lyapunov exponents: Avg. rate of deformation
Covariant vectors: direction of deformation

7

-J

Exponent signs indicate long-time dynamics:
Steady Periodic Chaotic
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All Negative Zero, Negative Positive, Zero, Negative

Positive Lyapunov exponents responsible for the butterfly
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The Shadowing Lemma
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Shadow Trajectory

Consider a system governed by

du

dt 
f (u, s)

For any 64>0 there exists 6>0, such that for every "6-pseudo-solution" u satisfying Ildu/
dt—f(u)11<6, there exists a true solution u satisfying du/d-r—f(u)=0 under a time
transformation T(t), such that
Ilu(T)-u(t)11<ö, 11-thidtkö

Reference Trajectory



Time Transformation
-dr
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Reference
Trajectory
ur(t)

Shadow
V Trajectory

u(r)

dt

U t_i+i)

Ur(ti)

Without Transformation

dT
  1
dt

dr

Shadow
Trajectory

u(r)
Reference
Trajectory 

dr
dt

ur(t) u(Ti+i)
ur~t-z+l) (Ti)

ir (ti)

With Transformation

dT
  I 1dt

Time transformation is required to keep the trajectories close in phase space
for all time



Tangent NILSS

Optimization:

min
a2,iE[1,K+1]
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2

2

KKT Equation System:
-I

aK

aK+1

-I
•

•

•
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•
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Adjoint NILSS

Optimization:

min
wi,ic[1,K]

KKT Equation System:
- -I

I

I
I

RI-1
— I R -1

— I RI:,
-I

R1 -I

R2 -I

RK I

Schur Complement:
- R,,RT ± / -RI

-7?-2 R-27-4 + I —74

RK R, KR-K1 + I -

g 1
•

gK
o

2

2

/ Xi \ / gi \

X2 g2

XK

XK+1

tp,
W2

TK

gk

0

o
o

- R-1 g 1 — g 2
R-2 g 2 - g3

•

_ R'KgK
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Tangent NILSS Algorithm: Part I

• Set f/o(t-cF, )= 0 and q(t-cF, )= 201 a random orthonormal

• For each segment starting with 1:

1.Compute primal u(t) from ti_i to t
di13

2.Com ute all m fi/i t from ti/fi ti_1 17,iii by solving
dt

3.Compute QR-decomposition QiR,i _ -1-4,(ti) Ptif/Ati)

4.Set 17,i/±1 = Qi

5.Compute i(t) from f4(tt 1) by solving ddli)ri) t

6.Set f)41(tt) = (/ — Qi QT)Pt7 (14 (tT )
i

Sandia
National
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matrix

Of _ii— —v ,t E [t2-1, ti]
Ou i

Of 1 Of = 1)• + , t c[ti_1,ti]
au i Os 

• Compute segment sensitivity contributions gz and h, :

gt
1 ft, oj

tK —to It, i Ou

T

V i i (t) dt + x7-1, 1 7 Ati) h,
t

1 f (u(ti); s) 
where: xi = (J J(u(ti)))

tK —to 11 Pu(ti); s)II

1 fti aj

tK —to Iti I an

T

t
/1)(t) dt + xi7 - 1 fli(t n

f (u(ti); s)T
Pti T- I f (u(ti); s) 

I f (u(ti); s)H



Tangent NILSS Algorithm: Part 11
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Solve

min
a2,iE[1,K+1]

al

•
•
•

cv_K-

aK+1

2

2

s.t .

R1 I

RK

a1
•
•
•

cvic

ccK+1

[ 
Q1-7,N (ti )

[— Q.I-11)K (ti)

Compute sensitivity to s with cti's and segment sensitivity contributions g,
and hi K 

dJ 1 OJ
  _: (giTai + hi) +

ds tK to i 1 Os

Why "Non-intrusive"?

Tangent NILSS framework can be built with existing conventional primal and
tangent solvers.

Part I of algorithm requires running the primal and tangent solver on each
segment.

Part 11 can be completely independent of primal and tangent solvers.

33



Adjoint NILSS Algorithm: Part I

. Set Uo (to )= co, a random orthonormal matrix
• For each segment starting with 1:

1.Compute primal u(t) from ti_i to ti

2.Compute all m iiii(t) from 4-1i (ti_1)

3.Compute QR-decomposition QiR,i

4.Set I-71+1 = Qi

Sandia
National
Laboratories

cliP 0 f ,
-1-?: by g   = 13 1 solvin —/ 37t E [tz_11 tt]

_ dti au i 
,

Vi (ti ) = P t iVii (c )

• Compute segment sensitivity contributions gi:
1 ftt 0 j T _

g z   V,: (t) dt + x?7,1-1-,/(c)tK —to lt, , au t

1 f (u(ti), s) 
where: xi = tK — to

(J J (u(ti))) 
11 f (u(ti); s)112

f (u(ti), s)T
Pti T I f (u(ti); s) 

I f (u(ti); s)H



Adjoint NILSS Algorithm: Part 11
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• Solve the minimization problem

-/
min

(i,ie[1,K]
SK

2

•••
gK
o
- 2

• Set w(t-I-F) = O. For each segment starting With K solve the adjoint equation
backwards from ti to ti-l:

(10 Of T 
iO  

1 40J 
(ti) = Pti ((I — 2i2T)(1P(riF) — 24) + xi

dt Ou t tK — to Ou

• Compute sensitivities or error estimate with

dJ 
tK T OJ tK

Sensitivity: cT = 0(0 dt   Error: E 
dt 

m(ix),tph) dt
ft° OS OS 

*Adjoint NILSS framework can be built with existing conventional primal, tangent,
and adjoint* solvers.

mPart I of algorithm requires running the primal and tangent solvers on each
segment.

-Part II requires running the adjoint solver on each segment
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- Development of a compressible entropy-stable high-order spaeo-timp

discontinuous Galerkin spectral element method (DGSEM) framework

DGSEM to efficiently reach spectral limit both in
space and time (N 8) I 

4

Less discretization errors and efficiency

Better match for current/future hardware 
8

Low dependance on mesh quality

h-p adaptation

Entropy-stable formulation

Entropy variables

Space-time DG discretization

Entropy stable flux of Ismail and Roe

"Exact" quadrature using local de-aliasing

16

8
Target

,,
z0

''''''

SOA
1 1

0.016
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0.008
ca
ca.
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1/8 1/2 2 8 16
Operational Intensity (flops/byte)

00 
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----- Entropy _

%OS
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Time
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Minimal Turbulent Flow Unit
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