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DES and LES are needed to capture key physics in a number of important
aerospace applications.

High Pressure Turbine Blade

Launch Vehicle External Aero

Scramijet Fuel Injector/Mixer




Adjoint Sensitivity Analysis of High Fidelity @ Sandia
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* Types of Sensitivity Analysis

» Tangent: sensitivity of many
objectives to one input parameter
« Adjoint: sensitivity of one
objective to many input
parameters
* (@Gradient-based Design
Optimization
* Error Estimation

« Mesh Adaptation
« Uncertainty Quantification

»  Systems with unsteady flows have
many important objective functions
that are time averaged

— Conventional sensitivity analysis fails for these objectives in
high fidelity simulations, which exhibit chaotic dynamics




e . @ -
Sensitivity Analysis ol

Objective T — Objective

Function o Ty —To Jr Sensitivity
0

Equation

Governing du _ f( )‘|‘5f( ) Adjoint

Equation




Sandi
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* DNS for T106C Turbine Blade (Garai & Diosady)
* Objective is axial force

Velocity
Magnitude

Adjoint X-
Momentum

*> Adjoint grows exponentially due to chaotic dynamics
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Governing Equations:

du log(error)

ar () g 4.000

. . 3.000

Error estimate using dual- 5000

weighted residual method 1.000

(Becker & Rannacher _(1’-888

1995) 2,000

tre -3.000

e=J(u) — J(up) ~ / <d:;—tH . fh(uH),wh> dt -4.000
to

Local Error Estimate

duH

()= { "2t fulun (). vnlu(0) )

Unbound adjoint not useful for error estimation
Estimate is orders of magnitude larger than actual state
Error localization just shows where adjoint magnitude is large




Failure of conventional sensitivity analysis
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- Lorenz 63 System
« QObijective z: rate of heat transfer
* Input p: temperature difference




Failure of conventional sensitivity analysis @ Sandia
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Sensitivity analysis approaches for Sandia

_ National
chaotic systems Laboratories
2.5 - | b 1. Ensemble Adjoint Method
2.:t . | « Lea et al. 2000, Eyink et al. 2004.
{7 2. Fokker-Planck Methods

o sty « Thuburn et al. 2005., Blonigan and Wang 2014
iy 3. Fluctuation-Dissipation Theorem

* Leith 1975, Abramov and Majda 2007
4. Least Squares Shadowing (LSS)

_ | R - Wang, Hui, and Blonigan 2014
_O'E'gb,—_h_'“ T &J R 5. Unstable Periodic Orbits

Lasagna 2017

6. Added-Dissipation methods

- Talnikar and Wang 2015, Bhatia and Makhija
2019, Ashley and Hicken 2019, ...

1. Ensemble adjoint sensitivities for short, medium,
and long time segments.

2. Fokker-Planck computed stationary density (left) 4. LSS reference and 5. Unstable )I(Deriodic
and its adjoint (right). shadow trajectories. Orbits.
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Conventional Objective Surface Shadowing Objective Surface
w“ 'v%"br- \u”'t ' " .,:‘..’:”: ‘) % N 55 8
37 UM A, b . .'”"“ﬂic" . 51.0
r'r‘\ y‘ QLT l”}‘ 49.8
| "\‘ Y 45.9
» i 438
‘ | 40.8
137.8
- : 135.7
© . 34 1318 1306
= ]
» 58 125.5
198 20.4
32
13.8 15.3
3 7.8 10.2
30 1.8 30 * 5.1
26 2?nput F}aorametézr - 8 28Input Ia-’oarame%%r %
 Fixed initial condition for all input « Choose initial condition for smooth
parameter values. variation of objective history with input

parameter.
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* Assume ergodicity, replace initial Shadowing Objective Surface
condition for u(t) with
1 T, 51.0
. - . 2
u(T(t)ﬂlén[To,Tl] 2 J1, Wlu(r(t) = ur(OI" df o
du 440.8
S = f(u;s+9ds) |

130.6

125.5

»Linearize for tangent LSS: 20.4

ou N , 1 h
U = — min —
0s v(t), te[To, T1] 2 J1

15.3
W (t)|lv(t)|* dt
10.2

dv df  O0f dr 30 5.1
5.t dt B ﬁuv " Os (1__>f 26 # Inputharamger #

N y * Choose initial condition for smooth
du " variation of objective history with
S.1 <fU, E> =0 iInput parameter.

11



Non-Intrusive Least Squares Shadowing @ ﬁaaggﬁal
Optimization Problem Laboratories

. 1 | 9 d’U o af I af : du -
min _ZO”U(t’)H S.t. = (,Mv iy Fnf, <’U, dt> —

- Decompose tangent: v(t) = V;(t)ay; + ;(t), t € [ti_1, ]

Homogeneous Inhomogeneous
I d?  f . do; Of .  Of
= o Tl L= L) 7 7J:_Az' a_ ] )
- v‘i UT dt EW + a7, dt Fu w 0s +f
- : @, ) =0 (@i, f) = 0
1 K+l o ) )
min — Z CMZTV;-TV;'CM -+ QTAJZTV;O(Z S.t. V;(t,:)Oéz -+ @z(t;) = V;'_|_1(t,j_)()éi_|_1 —+ ?A}i_|_1(tz—-|_),
ai,i€[1,K+1] 2 — e
Segment 1 !:@‘c
I I
I I
I
I
— { —-
to t1 to t3

— Choose a that solves the least squares problem
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Non-Intrusive Least Squares Shadowing @ sandia
Optimization Problem Laboratories
K—l—l ~ N
ai,iér[lli,r;(—l—l Z of ViiViai +20] View st Vi(t7)aw + it ) = Viga (6 )aigr + 01 (8), i € [1, K]
dv] _ Of 5y =0, tE€[tiiit
di au ‘|‘77f, </U17f> ) [@ 1, Z]
d  Of  Of . o o
= 5 0t 5 8, (05, /) =0, T € [ti—1,t]
- Use orthonormal basis for V;: Vi(t;) = Q;R:, Vi (th) = O,

* Ensure 0;+1(¢]) is orthogonal to Q;: 91 (; ) (Z — ;9] )vi(t;)
* Optimization problem can be rewritten as

o - - Qo - A P
! R, -1 ! —Qf v1(t7)
min : s.t. . . ; _ :
aii€[LK+H1] || ape ' ' R
R —7 — oL %
QK41 K - | OK 41 K K( )'

« KKT System: (# of modes) X (# of segments)
=Number of modes needed is (much) smaller than spatial DoFs
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A Segment 1

()] /\///2

- Tangent NILSS
1. On each segment:

Compute Primal, u(t)

Compute homogeneous Tangents using
previous segment’s Q matrix columns as
ICs

Compute inhomogeneous Tangent using
previous segment’s projected tangent as IC

Compute contributions of tangents to
sensitivities

QR of final homogeneous Tangents, store
Q and R for later.

Project inhomogeneous Tangent onto
complement of Q matrix, store for later

2. Form KKT system and solve.
3. Compute sensitivities.

* Adjoint NILSS
1. On each segment:
« Compute Primal, u(t)

* Compute homogeneous Tangents using
previous segment’s Q matrix columns as ICs

« Compute contributions of tangents to
sensitivities
* QR of final homogeneous Tangents, store Q
and R for later.
2. Form adjoint KKT system and solve.

3. On each segment, starting with final
segment:

* Solve adjoint equation with terminal
condition specified from KKT solution,
next segment.

4. Compute sensitivities.

14



Least squares shadowing for Lorenz 63 @
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Time averaged objective
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Input

Lorenz 63 System

Objective (z-28)2: deviation of rate of
heat transfer

Input p: temperature difference
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Minimum Turbulent Flow Unit
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Smallest channel that can sustain turbulent
flow (Jimenez and Moin, 1991).

* Very good agreement with turbulent channel
statistics below y+=40

Current study replicates a case in the original
paper

« Re=3000, Re{=140

« Channel size=rthx2hx0.341th

Flow Solver: ﬂ%‘%’/y

« Discontinuous Galerkin Spectral Element
Method (DGSEM) framework

» Space-time DG discretization

- Entropy stable flux of Ismail and Roe
Mesh: 32x128x16 Degrees of Freedom
Objective: Kinetic Energy

g " Q-Criterion
' isosurfaces
colored by x-

25

H . -
i 4 -
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20 : ' g
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Minimal Flow Unit

* Cost of NILSS scales with the . Lyapunov Exponents:
number of modes, m: A
* One tangent solution is required
for each mode.
* Solving the tangent equations
dominates the cost.
* mis at least the number of unstable P w0 o w2
modes. Minimal Flow Unit

Adjoint Magnitude:

 Minimal Channel, m = 150
* Re{=180 channel flow, m = 1,500
* T106C turbine blade, m = 350

- m=16)
*m=120 ||

Adjoint L2 Norm
—
o

3 i A i J
0 1000 2000 3000 4000 5000 6000 7000
Near-Wall Time

17



Sandia
NILSS Sensitivity @ National

Laboratories

1072 . . . . . . 0.159

.. 0.158}

0.157}

dJ/dRe,

0.156¢

Integrated Kinetic Energ

o
=
Ul
Ul

10

! ! ! ! ! ! 1 ! L ! L
0 1000 2000 3000 4000 5000 6000 7000 0 338.5 139.0 139.5 140.0 140.5 141.0 141.5
Near-Wall Time Re._

NILSS run with 160 modes, 400 time segments.

Objective function is volume-integrated kinetic energy

Sensitivity to Rer computed

Slow convergence of sensitivity due to long time scales present in flow unit
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Turbulent Burst

1.4 -
\.. {p I
= 0.9 : |
A 0.B} . =« [Top Wall
i i « |Bottom Wall
t=1764 t=1845 o7
Q-Criterion isosurfaces colored by x-momentum .
- Shadowing adjoint does not exhibit E
exponential growth <}:(>E o
- Adjoint provides physical insights TEVRINN NS ([ 1 SO S A,
* Largest adjoint magnitudes occur before g 5
bursts of turbulence indicated by wall sl | S i Ay
Shear stress T f Shadowing A:ijoijnt
107 ;

0 1000 2000 3000 40100 5000 6000 7000
Near-Wall Time
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e e @ga;;dia,
Flow Unit Adjoint Field o

Q-Criterion isosurfaces Adjoint X-momentum
colored by x-momentum iIsocontours for 2.0

Walls colored by shear
force Magnitude

- Integrated kinetic energy adjoint shows when and where flow is most
susceptible to flow instabilities

20
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Dual Weighted Residual with Shadowing @

* Minimal Flow unit with p=4 mesh: 1.0
« 16x64x8 Degrees of Freedom

 Error estimate using dual-weighted residual
method (Becker & Rannacher 1995)

e = J(u) — J(um) ~ /K <d§’—f - fh<uH>,wh> dt

Run NILSS on enriched basis (p=8),
linearizing about injected primal:

dvy, — Ofn
dt B 8uh
e _Of|T
dt ouy, wr
« Enrichment in space only! (Krakos 2015)
« P=160 modes for shadowing.
- Adjoint magnitude bounded.

- Error localization differs from adjoint,

o o
o o

Normalized Units

S
N

~/
Up,
(V=4

1 0Jp,
tK — to 8uh

UH

o
=
~J
wn

0.170

Kinetic Energy

0.165-

unlike conventional adjoint. 0.160 -

» Error particularly high at burst event.

S
IS

o
o
'

W

— el

— [V

800 100
Near-Wall .

— |R(UY)

b0 1400 1600

0.180 -

400 60D

800 1000 1200 1400 1600

Near-Wall Time

KE
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Normalized Units

Error estimate remains bounded. Localized Error Estimate and Adjoint

Adj. x-momentum

Largest errors near certain
_ /dum 0.250
structures/events. €x(t) = <d—t — fh(uH(t))a¢h|m(t)> u
Space-time adaptation?
- Butterfly effect?
- Changes to mesh = changes to
dynamics?

Adapt to fixed mesh using statistics?

Error

1.0+ | n: — el .10:-6
— R 107-7
10~-8
0.8 — |Wa 10™~-9
0.6 Mean Error Standard Deviation
e — E
0.4 -
0.0 L i;g; ) g 16~-7

T T T T T b [ |
400 600 800 1000 1200 1400 1600 I,c.._d
Near-Wall Time
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Extreme Event Prediction
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Mean behavior vs. extreme behavior

Example: turbulent burst event in
channel

Adapted approach of Farazmand
and Sapsis:

max |F(u(1) — F(ug)]

ug EU
p Constraints:
— = f), u(0) = uo

ug € ACU

Angle between state and precusor
predicts onset of extreme even

More details this afternoon in MS287

Other approaches in our second
session, MS302

i)

0.23

0.22

0.21

c.20

¢.19

State Space:

‘l"-)‘- .. )

.
Y
Attractor: A

\—-"’,

- 1.0
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Conventional sensitivity analysis approaches fail for chaotic dynamical
systems such as scale-resolving turbulent flow simulations

Shadowing-based sensitivity analysis is a promising approach for chaotic
systems

Non-Intrusive LSS can compute useful sensitivities
» Cost scales with the number of positive Lyapunov exponents

Shadowing adjoint provides valuable physical insights into turbulent flows,
highlights local space-time errors.

Conventional adjoints can also be used in a gradient-based optimizer to
predict extreme events in lightly turbulent flows.

24
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* We have job openings at Sandia National Laboratories in Livermore, California
in the areas of reduced-order modeling, scientific machine learning, high-
performance computing, and uncertainty quantification.

* Postdoctoral position: sandia.gov/careers, Job # 665436

- Candidates *are not required* to have the ability to obtain a U.S. Department
of Energy security clearance.

- Staff position: sandia.gov/careers, Job # 665417

* Candidates *are required” to have the ability to obtain a U.S. Department of
Energy security clearance, which in turn requires U.S. citizenship.

* Please contact me (pblonig@sandia.gov) or Kevin Carlberg
(ktcarlb @sandia.gov) if you have any questions!

* Also:
* Postdoctoral position in Compressible CFD in Albuguerque, New Mexico.
- Postdoctoral position: sandia.gov/careers, Job # 664661

- Candidates *are required” to have the ability to obtain a U.S. Department of
Energy security clearance, which in turn requires U.S. citizenship.
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*  Phase Space for system d_?: = f(u;s)

= f(u;s)

Uniform
Perturbations

Lyapunov exponents: Avg. rate of deformation
Covariant vectors: direction of deformation

> Exponent signs indicate long-time dynamics:
Steady Periodic Chaotic

-

All Negative Zero, Negative Positive, Zero, Negative

> Positive Lyapunov exponents responsible for the butterfly

27
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. ) Reference Trajector
Shadow Trajectory —>, J y

Consider a system governed by

For any &>0 there exists €>0, such that for every “e-pseudo-solution” u satisfying lldu/
di—f(u)ll<e, there exists a true solution u satisfying du/dt—f(u)=0 under a time

transformation t(t), such that
lu(t)-u(t)ll<od, I1-dt/dtl<d

28
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Shadow Shadow

o Trajectory Trajectory

O\ u(T) u(T)

Reference Reference /

1rajectory \ 1rajectory 4t a7
Ur(t) | QU(Tig1) ul“(t) ) u(Tiy1)
Lu(m) ur(tinn) \ | gu()

u(t;)

Without Transformation With Transformation
dt

dr
— =1 — £1
dt dt#

« Time transformation is required to keep the trajectories close in phase space
for all time
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Optimization:
2 _ -
4 R1 —I ] o [ — O 01 (¢7)
min : s.t. ‘- , : = :
aii€[LKH] || ap ' ' 1) e o
R -1 — QL (¢
AK+1]|9 ) . - K41 ) Ok Ox K)'

KKT Equation System:

—1I RT Qa1 0
—1I ~I RY ( %) \ ( 0 \
—T —1 R% Q¢ 0
"y ) axi1 | = 0
Ry -1 51 _Q{vl(tl_>
Ry —1 52 _Q2 UQ( )
_ Rk I I\ B )\ —oixtn) /
Schur Complement:
i R1R{+I —Rg 171 51 ] Ql Ul( ) ]
—Ry  RoRT+I1 —-RY B | | —Q2 112(?52_ )
—Rrx RxRi+I || Bk | | —QLik(tx) |

30



Sandia
Adjoint NILSS @ oo

Laboratories
Optimization: ] ] ;
R{ ‘w 7 _gl_
1
. -7 . ,
qf'?él[?K] . T
° ’ R"ZI;— wK 9K
_ _I_ i i - O = 2
KKT Equation System:
| RlT ] X1 g1
= —I Ry ( X2 \ 92 \
—1 -1 Ri XK 9k
—1 —1 xs+1 [ =1 0
R, 1 0, 0
Ry -1 U, 0
L R -1 | \ U ) \ 0 )
Schur Complement:
i RlRiF = I —Rg 171 \Ifl i i ngl — g9 1

—Ro RoRY+1 —RYL U, Rags — g3
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+ Set 0,(t7) =0 and V](t) = Qo, a random orthonormal matrix
0 0\%0

*  For each segment starting with 1:
1.Compute primal u(t) from ti-1 to t; |
1] -1 _ i o dv! Of
2.Compute all m ¢ (t) from v;” (t;—1) = V,-; by solving == e [t ]
3.Compute QR-decomposition Q;R; = V;i(t; ) = P, V! (t;)
4 .Set il-l—l — Qz . 5 5
5.Compute ©.(t) from o.(t;",) by solving CZ: = 8£@;+ 5{; t e [ti—1,ti
6.8et il (t}) = (T — QiQF)P,-0(t; )
- Compute segment sensitivity contributions ¢; and h; :

1 bi 8] T~ = 1 Ly 8J T
0 Gy aeat ) n= [ 2w oo
e — /ti_1 3, (2) z; Vi(t;) h sl B aUtvz(t) dt + z 70! (t7)
L fults); 5 fulti); s)"
T = J — J(u(t; P, =17-— t;):

32



Sandia
Tangent NILSS Algorithm: Part li @ National

Laboratories
* Solve
2
Oé.l Ri{ -1 Oé.1 ) _chrﬁl (tl_) |
| ape | =l
ag,te|l, 0774 _ OK
AK+1]|, ) s - YK +1_ QKUK( )'
« Compute sensitivity to s with ai’s and segment sensitivity contributions g;
and 7 45 ) K 5.7
T
im0+ ) +
ds tK—tozzl(g % T )+8s

*Why “Non-intrusive”?

= Tangent NILSS framework can be built with existing conventional primal and
tangent solvers.

= Part | of algorithm requires running the primal and tangent solver on each
segment.

=Part Il can be completely independent of primal and tangent solvers.
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. Set VJ(t) = Qo, a random orthonormal matrix

* For each segment starting with 1:
1.Compute primal u(t) from ti.1 to t
2.Compute all m ¢/ (t) from 7 (t;_,) = V', by solving d@: gf 0t € [tiot, t]
2 Compute QR-decomposition Q;R; = V;(t; ) = P, V/(t; ) ’
4.8etV/ = 9O,
- Compute segment sensitivity contributions ¢:

! /ti aJ|"
g'l tK _t() ti_1 au t

Vi (t) dt + 27 V/(t])

where: =i = . = ti); s
; 1Lf (u(ti); s)13

<+~
=
|
~
=
/N
~
/-\
/\
-
S,
»
N——r
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» Solve the minimization problem

-Rr{ B Cl 7] _gl ]
, — : . )
Al i
Ciri€[l, . R% . gg
- Set w(tk) =0 . For each segment starting with K solve the adjoint equation

backwards from tj to t-1:

dy  Of|" 1 8J
__wz_f ¢_|_
dt ou |, tg —tg Ou

« Compute sensitivities or error estimate with

aj = afl" a.J . /d
Sensitivity: o= / 8—‘§ Y(t) dt + —  Error: e & / <ﬂ — fh(uH),¢h> dt
t to

0s dt
0 t
% Adjoint NILSS framework can be built with existing conventional primal, tangent,
and adjoint* solvers.

=Part | of algorithm requires running the primal and tangent solvers on each
segment.

=Part |l requires running the adjoint solver on each segment

W(t;7) =P, (T — Q90 )(t) — Qi) + =
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—— Development of a compressible entropy-stable high-order space-time
discontinuous Galerkin spectral element method (DGSEM) framework

- DGSEM to efficiently reach spectral limit both in

space and time (N = 8)

 Less discretization errors and efficiency
- Better match for current/future hardware
» Low dependance on mesh quality

* h-p adaptation

* Entropy-stable formulation

Entropy variables

Space-time DG discretization
Entropy stable flux of Ismail and Roe

“Exact” quadrature using local de-aliasing

(flops/cycle)

Performance

Dissipation Rate
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