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Analyst’s Goal e e

A large portion of people using the finite element method are faced with a
general task:

Deliver critical engineering analyses in a timeframe
consistent with project requirements
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Meshing is Time Consuming E ‘ shnein

Challenging engineering analyses are common at Sandia. Goal is to have a
general solution, must address the more burdensome models: multi-body /
material, complex geometries, contact, nonlinear materials, dynamic loading

Battery Microstructure

source: https://www.nasa.gov




Engineering Analysis, Process Cost

Center for Sandia
1,2 Events, National
Breakdown' i Laboratres
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M. F. Hardwick, R. L. Clay, P. T. Boggs, et al., “DART system analysis,” Sandia National Laboratories, Tech. Rep. SAND2005-4647, 2005.
2J. A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons, 2009.
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Approximate solutions are constructed over a point cloud. Shape functions are
constructed as the product of a kernel function and a correction function

M) = Z‘i’ldl; Y = Clx;x —x1)ba(x — xp)

Point I
¢(x — ) on Q

Clx;x —x;) Zb (x —x;)' =H (x — x;)b(x)

H (x—x) =[Lx—x, (x—x)% ..., (x—x)"]
NP
b(x)is obtained by imposing completeness requirement: Z‘P,xf =x,0<i<n

NP =1

b(x) =H'(0)M '(x) where M(x)= ZH(x—x,)HT(x—xl)d)a(x—)q)
I=1
@ Kernel function: compact support, determines smoothness

@ Correction function: provides completeness
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The following challenges all stem from shape functions not conforming to
boundaries

@ Concave geometries @ Essential boundaries
o Visibility e Lagrange multiplier
o Diffraction e Singular kernel

@ Bi-material (weak discontinuity) e Penalty
o Enriching o Nitsche’s
e Coupling e Coupling
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Conforming Window Functions S Laboratores

Utilize the flexibility that meshfree methods provide, supply more
control where needed.

Traditional, Euclidean Windows / Kernels

New, Graph-Informed Windows / Kernels
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Conforming Window Functions H ‘ shnein

The conceptual steps in creating conforming windows are:

@ Choose the subdivision strategy and create subdomains for each
window

@ Define the function space (on the subdivisions) for building the window
function

@ Construct the functions by specifying the coefficients of the space

The conforming window functions replace the traditional window functions
and the rest of the RK or MLS method remains the same.
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Many ways to subdivide. Here we choose triangulations.
RK / MLS to build approximation functions, requires overlapping kernels

@ Extract “stars” from global triangulation

@ Construct local, kernel specific triangulations

Example for two vertices, using star’ Local overlapping triangulations



Function Space for Constructing P Sonti
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Window Functions s, Haouptores

Bernstein-Bézier polynomials on triangles. For example, Sé’z (Argyris Space,
quintic, C! on edges, C? at vertices)
e Established theory for smoothly joining functions between triangles
within a triangulation
@ Convenient for Hermite interpolation

E500 Sa10 an0 Eo30 $1a0 $os0
Domain points on a triangle Nodal locations for a triangulation
Need function and derivative values at nodal locations for Hermite
interpolation.
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Setting the Coefficients @ﬁaﬁ?m“?&m

Function values and derivative for Hermite interpolation.
Modify a traditional, radial cubic B-spline window function
Traditional window function:

1—6/ 46  for0<7F<3
G(F) =4 2—6r+6/2—2F ford<r<1
0 otherwise,
7 = r(x)/R, the normalized distance.

Replace 7 with r,, the normalized graph distance:

P 1 Vv €Ny, vo&Np
& dg(vo,vi)/Rg otherwise

dg(vo, vr) is the graph distance between vertex v; and the center vo, R, is the
chosen graph extent (e.g. starf¢), N, is the set of nodal parameter locations
on conforming boundaries




Normalized Graph Distances i @%

Normalized graph distances, d,, at the S;’Z nodal parameter locations for a
second order stars:

Away from a boundary

Near a boundary
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Figure: Interior conforming windows and approximation functions
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Non-
conforming at
essential
boundary

Conforming at
essential
boundary

Wy
(Kernel) (Shape Function)
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Near Non-Convex Region @ﬁ“ﬁﬁ%

Non-
conforming
window with
visibility check

Conforming
window

(Kernel) (Shape Function)
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“Snap” Star @ T s

Avoid quality issues by adapting the star shape with poor quality meshes.
@ Use all elements that are contained or intersect a Euclidean ball
@ Use normalized Euclidean distance for nodal locations inside the ball
@ Set the normalized distance for nodal location outside the ball

Figure: star?
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Figure: “snap” star Figure: star?
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“Local” Star e T s

Construct window function using local triangulations, not from a global mesh

Figure: Local Triangulation Figure: “local” star
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Elasticity Patch Tests e @%

7

I—5‘OOOe—O3

0003

[D .000e+00

Figure: Deformed Figure: RKPM, Figure: RKPM, Figure: CRK,
triangulation transformation method Nltsche s method static condensation
Method L? H,
RKPM with transformation method 2.05e-03 2.44e-02
RKPM with Nitsche’s method 3.85e-16  4.93e-15

Conforming window RK with static condensation ~ 7.65e-17  1.04e-15

@ Weak Kronecker-Delta — Kinematically Admissible Approximations
e Interpolatory along boundary: u"(x;) = d; — directly impose essential
boundaries (like FEM
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Panel with a Re-entrant Corner @ @%

An elastic plate with an edge crack
® &=38),v=03 @ Plane strain
@ Mode | loading

@ A=05
@ Exact displacement along edges (except -
re-entrant edges) @ 0=1/3

O =AM [(2—=Q(A+1))cos((A—1)0) — (A —1)cos((A —3)0)]
oy = AP 2+ Q(A + 1)) cos((A — 1)0) + (A — 1) cos((A — 3)0)]
Oy =AM (A —1)sin((A —3)8) + Q(A + 1) sin((A —1)0)]




(a) RKPM (b) RKPM, visibility criteria
‘UI/I/ l‘llll
[1e+06
fj5e+5
c) CRK, star convex (d) Enriched CRK [
0e+00

Figure: Error in oy, near the crack tip. Nodal spacing #; = 0.02.
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Panel with an Inclusion Laboratores

An elastic panel with an inclusion

@ (4x4) panel, R = 1 for inclusion @ Tension in x direction
@ |Inclusion: E = 10.E4, v =0.3 @ Exact displacement on symmetry planes
@ Panel: E=10.E3,v =03 @ Exact traction on other edges
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Figure: €,, near the material interface.
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Results Comparison I ‘ il

Laboratories
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Figure: Convergence in u Figure: Convergence in energy



3D Implementation and Examples



Simplification of Conforming
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Kernel Implementation B @ﬁ“ﬁﬁﬂ?&m

Require integration points to be nodal locations (i.e. Hermite
interpolation locations) of the kernel function space
@ No construction of Bernstein-Bézier spaces required. Values are
explicitly set at the integration points, implied elsewhere.
@ Pairs well with integration using smoothed gradients®
Example for Stabilized Conforming Nodal Integration (SCNI) with boundary
edge integration using trapezoid rule.

CRK Nodes

Starting
Triangulation

Added Triangles

3.-S. Chen, C.-T. Wu, S. Yoon, et al., “A stabilized conforming nodal integration for Galerkin mesh-free methods,” /nternational Journal for
Numerical Methods in Engineering, vol. 50, no. 2, pp. 435-466, 2001.




3D Example: Carbon Black Rubber st

Domain Example Tet Mesh Example Hex Mesh
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3D Example: Carbon Black Rubber &%

pressure
-3.0e+12 0 3.0e+12
|




3D Example: Carbon Black Rubber

Center for
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Events
Research

700 1

600 -

500 -

Force (uN)

s CRK-Snap, F 29.66
== == = RKPM, F 31.49
— Composite Tet 21.47
e SD Hex 15.98

= = UG Hex 19.82

0 5 10 15 20
Displacement (nm)

Natlonal
Laboratories



3D Example: CDFEM Spheres o

The Conformal Decomposition Finite Element Method (CDFEM)* details a robust
procedure for generating tetrahedral meshes of complicated geometries but mesh
quality is often too low for structural analyses.

2.0e+09

[ Te+9

-0

l -le+9
-2.0e+09

cauchy_stress_1

Mesh of Two Spheres RKPM results

4S. A. Roberts, H. Mendoza, V. E. Brunini, et al., “A verified conformal decomposition finite element method for implicit, many-material
geometries,” Journal of Computational Physics, vol. 375, pp. 352-367, 2018.




3D Example: CDFEM Spheres e st

Use mesh only as a guide. Select a subset of vertices to be nodes carrying
DOFs. Aggregate elements into better shaped integration cells.

2.0e+09
l, le+9

0

. -le+9
-2.0e+09

cauchy_stress_1

Aggregated Elements CRK Prediction
~1000x time step advantage over a linear tet on the CDFEM mesh.
More robust. Higher solution quality.
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Goal: Improving the Analyst’s Response Time
Approach: Utilize the flexibility that meshfree methods provide, supply more
control where needed

Conforming window functions to handle boundary / geometry challenges of
meshfree methods.
Global triangulation:

@ Method to aggregate elements

@ Less connection between element and solution quality

@ Provides data structure similar to FEM, helps with efficiency
Local triangulations: Handles boundary challenges while maintaining more
of the meshfree nature of the methods.

Future Work: Better classification for element aggregation. Extend to handle
material separation.




