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2 Continuum Sintering Modeling

Sintering is an important manufacturing step in both
traditional and additive manufacturing

• Continuum modeling important for analysis and design

Traditional Processes
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(Kraft and Riedel, 2004, JECerS , 24, p. 345-361) (Abdeljawad et al., 2019, Acta Mat., In Press)



I3 Sintering Stress

Much of physics in
sintering model through
specification of sintering
stress

Forms exist for different
stages; microstructure
assumptions

Limitations in terms of
complex
microstructure(s)
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(Olevsky, 1998, "Theory of Sintering: From Discrete to Continuum", MSER, R23, p. 41-100)



I4 Objectives and Outline

Common impact of microstructure seen
through effects of particle ske distributions

Current constitutive models
Cannot capture this behavior

Require recalibration for each case

Objective of current work:
Develop new sintering stress incorporating
microstructure
. Analytical form

o Multiscale approach using phase field results

° Investigate impact on continuum structure

(Ma and Lim, 2002, Jrnl of the Euro. Cer. Soc., 22, p. 2197--2208)





6 Skorohod-Olevsky Viscous Sintering (SOVS) Model
I

D Skorohod-Olevsky Viscous Sintering (SOVS) model is a common
constitutive model for sintering analysis
° Essentially derived assuming linear viscous, incompressible fluid

Thermodynamically based with specific volume as internal state variable (ISV)
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I7 Sintering Stress

Sintering stress is thermodynamically conjugate to specific volume

as — 
( 0F 

av T

•Assume a free energy, F , such that

F (T , v) = Frn (T) + Fs (v) Es (v) as (i° (v)) v

s is the specific surface that is interface area per unit volume

ds
o- s — as — a cTpp

Definition depends explicitly on specific surface and relative density
Flexible definition depending on forms of specific surface

Can directly incorporate microstructure information; details



8 I Specific Surface Definitions

•Assume a log-normal distribution of particles
o Distribution is controlled by specification of
°,Q = 0 is the monodisperse limit
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9 I Specific Surface:Analytic Definition

• For analytic definitions, use two microstructure
assumptions/simplifications from Torquato (2000)
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10 Specific Surface: From Phase Field

&Lower micro-/mesoscale simulations can provide detailed analysis of
microstructure evolution

Look at recent phase field results of Abdeljawad et al. (2019, Acta Mat)
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12 Constitutive Response

Look at free-sinter response
o No-load w/ specified temperature history

o Reduced to an ODE for relative density

0.70

0.65

0.60

6.1
0.55

0.50

0.43
/50

800- (p) 
1.) P 2770 (T) ,tp (P)

Sintering profile through

constant, linear ramp

as

10

8

2

BORN QUALIFIED

Material/Particle

characteristics/parameters

asCla 6°)
Rel. Density Dependence

Sintering times to specified density

at constant temperature (900°C)

0
0
50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

P (-)

800 850 900

T, (" C)
950 1000



I Scaling Law

The scaling laws of Herring provide useful relationships on
impact of different features

• Consider two sets of particles exactly the same but of
different radii, r2 = Ar1
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14 Scaling Law Results

• Increasing the breadth of the distribution can greatly increase
sintering time for equivalent initial green densities
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15 Structural Impact

• Consider the bilayer bar problem of Arguello et al.
o Constant linear ramp temperature profile

o No applied load

o Quarter Symmetry

ey

(ArgUello et al., 2009, JACerS, 92(7), p. 1442-1339)



16 Bilayer Bar Results
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• Changing the particle size distribution of the bottom layer can
have a large impact on structural response

Avg. relative density of bottom can be greater or lower than top

° Large differences in final shape

Avg. relative density at the end of

the sintering profile
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17 1

A

Relative Density Profile
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18 I Summary and Conclusions
Developed a new expression for the sintering stress

Analytical expressions based on simplifying assumptions
A microstructure informed expression leveraging lower scale phase field results

New expressions can directly incorporate quantified microstructure
parameters including particle size distribution

Polydispersity can have a strong impact on constitutive and structural
behaviors

•Propose a new exponential scaling law

• Future work
- Experimental validation
- Extension to incorporate stages of sintering; micromechanical impact on
relative viscosity terms

• B. T. Lester, F. Abdeljawad, and J. E. Bishop, 'A Sintering Stress
Formulation Incorporating Particle Size Distributions", Submitted
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