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. | Continuum Sintering Modeling

*Sintering is an important manufacturing step 1n both
traditional and additive manufacturing

* Continuum modeling important for analysis and design
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(Kraft and Riedel, 2004, [ECerS, 24, p. 345-361)

“Direct Ink Write” Additive Manufacturing
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(Abdeljawad e# al., 2019, Acta Mat., In Press)




;1 Sintering Stress

*Much ot physics in
sintering model through
specification of sintering
stress

* Forms exist for different
stages; microstructure
assurnptions

* Limitations in terms of
complex
microstructure(s)
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Fig. 2 of Olevsky giving various sintering stress

forms

(Olevsky, 1998, “Theory of Sintering: From Discrete to Continuum”, MSER, R23, p. 41-100)




+1 Objectives and Outline a

*Common impact of microstructure seen
through etfects of particle size distributions

* Current constitutive models
> Cannot capture this behavior
° Require recalibration for each case

*Objective of current work:

> Develop new sintering stress incorporating
microstructure
° Analytical form
> Multiscale approach using phase field results

° Investigate impact on continuum structure

(Ma and Lim, 2002, Jrn/ of the Euro. Cer. Soc., 22, p. 2197--2208)
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« | Skorohod-Olevsky Viscous Sintering (SOVS) Model

* Skorohod-Olevsky Viscous Sintering (SOVS) model is a common
constitutive model for sintering analysis
> Hssentially derived assuming linear viscous, incompressible fluid
> Thermodynamically based with specific volume as internal state variable (ISV)

(Olevsky, 1998, MSER, 23, p. 41-100)




| Sintering Stress

*Sintering stress 1s thermodynamically conjugate to specific volume

_(oF
Os = ov )+

* Assume a free energy, F', such that

F(T,0)=F, (T)+F,(v) Fs@)=as(p))v

* S 1s the specific surface that 1s interface area per unit volume

ds
Os = QS — Q—p

dp

* Detinition depends explicitly on specific surface and relative density
> Flexible definition depending on forms of specific surface
° Can directly incorporate microstructure information; details




» | Specific Surface Definitions
* Assume a log-normal distribution of particles

° Distribution is controlled by specification of [
° B =0 is the monodisperse limit
i ()]
(R)

1
= ————ex
R/ 2w 3? P 23

3.0

N - IR _— D B=025
ool T— A TR T Maiall il

15 SO N - — A— H—

R)<R>, (-)

N—r

= 100 _______ Mo — ______________________ ______________________

T A o TR SR TS S ] ——
: o | |

~ ot i ; l
0'8.0 0.5 1.0 1.5 2.0 2.5 3.0




9‘ Specific Surface: Analytic Definition

*For analytic definitions, use two microstructure
assumptions/simplifications from Torquato (2000)
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o | Specific Surface: From Phase Field

* Lower micro-/mesoscale simulations can provide detailed analysis of

microstructure evolution

*Look at recent phase field results of Abdeljawad ez a/. (2019, Acta Mai)
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* Existing/analytic approaches
do not match data

*Propose new form based on
| differences
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Constitutive Response

*Look at free-sinter response
> No-load w/ specified temperature history
> Reduced to an ODE for relative density
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Scaling Law

*'The scaling laws of Herring provide useful relationships on
impact of different features

*Consider two sets of particles exactly the same but of
different radii, 7o = A\ry
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*Now consider the case two particle distributions, 72 =11 , f2 # b1
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(Hetting, 1950, Jral. Appl. Phy, 21, p. 301-303)




w1 Scaling Law Results

* Increasing the breadth of the distribution can greatly increase
sintering time for equivalent initial green densities
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. ‘ Structural Impact

*Consider the bilayer bar problem of Argtello e /.

> Constant linear ramp temperature profile
> No applied load

> Quarter Symmetry

P (t — @) — @57? ﬁhmﬂ; — ﬁ
(Atgiiello ez al, 2009, JACerS, 92(7), p. 1442-1339)
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Bilayer Bar Results

*Changing the particle size distribution of the bottom layer can
have a large impact on structural response
° Avg. relative density of bottom can be greater or lower than top

> Large differences in final shape

Avg. relative density at the end of

the sintering profile
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» 1 Relative Density Profile
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s | Summary and Conclusions

*Developed a new expression for the sintering stress
> Analytical expressions based on simplifying assumptions
> A microstructure informed expression leveraging lower scale phase field results

*New expressions can directly incorporate quantified microstructure
parameters including particle size distribution

* Polydispersity can have a strong impact on constitutive and structural
behaviors

*Propose a new exponential scaling law

* Future work
> Experimental validation

> Extension to incorporate stages of sintering; micromechanical impact on
relative viscosity terms

*B. T. Lester, I. Abdeljawad, and J. E. Bishop, “A Sintering Stress
Formulation Incorporating Particle Size Distributions”, Submitted
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