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INTRODUCTION

For radiation transport problems involving uncertainty,
the mean of a computed quantity is only of some value without
some characterization of the spread. Ideally, the spread of each
result is fully characterized as a probability density function.
In practice, simply computing the parametric variance—the
variance of the spread in the response caused by the uncer-
tainty described by the input parameters—often goes a long
way. Accurately computing the parametric variance usually
requires a collection of well-resolved transport calculations
each performed for a different sample of the random vari-
ables. In this paper, we present a new approach for computing
the parametric variance for problems involving input uncer-
tainty when using a Monte Carlo transport solver in which
the total variance is deconvolved into the Monte Carlo and
parametric variances and offer a non-intrusive and an intrusive
implementation of this idea. We expand on an existing ana-
lytic benchmark and use the resulting solutions to assess the
accuracy of the new method numerically.

Related work has focused on estimating the statistical
uncertainty on mean results [1, 2, 3]. We here instead focus on
developing a new way to accurately estimate the parametric
variance and the statistical uncertainty on its estimate.

VARIANCE DECONVOLUTION

Randomness described by input parameters causes vari-
ance in output parameters—we call this variance parametric
variance. Solving with Monte Carlo transport introduces a
source of variance independent from the parametric variance
who’s effects are minimized by solving with many histories—
we call this the Monte Carlo variance. We call the sum of
these two variances the total variance:

Viee = Ve + Viyc. (H

The relationship in Eq. (1) enables solution of any one of the
terms as a function of the other two. In this section, solution
of the parametric variance numerically by first estimating the
total and Monte Carlo variances is described.

A sample of random input variables yields a realization
of the stochastic problem. The total variance can be estimated
by simulating one history on each of a collection of randomly
sampled realizations since this process inherently convolves
the parametric and Monte Carlo variances. The total sample
(as opposed to population) variance for quantity 7 is then
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and r represents one of R,,, realizations.

The Monte Carlo variance is different for each realiza-
tion r, necessitating computation of the average Monte Carlo
variance across the possible realizations [2, 4]. The sample
Monte Carlo variance is estimated on realization r using Ny
histories:
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The average Monte Carlo variance is then estimated by aver-
aging on Rysc randomly sampled realizations:
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A simple, non-intrusive way to make use of variance de-
convolution is to simulate one history (N, = 1) on each of
R, realizations to estimate V,,, (using Eq. (2)), separately
simulate Ny ¢ histories on each of Ry, realizations to esti-
mate Vyc (using Egs. (4) and (5)), and take the difference
to estimate the parametric variance Vp (using Eq (1)). We
call this implementation VADE for VAriance DEconvolution.
VADE requires setting up Ry, + Ry realizations and simulat-
ing R;,; + Ryc Ny particle histories.

Embedded Variance Deconvolution

We also present an intrusive implementation of variance
deconvolution and call it EVADE for Embedded VAriance
DEconvolution. In EVADE, tallies are taken to estimate the
total variance and Monte Carlo variance on every realization
such that R,,; = Ryc. Tallies of the first and second moment
used in Eq. (2) to estimate the total variance are taken over
the ensemble of realizations only as a function of one history
on each realization (we arbitrarily choose the first). Tallies
of the first and second moment used in Eq. (4) to estimate
the Monte Carlo variance are taken on each realization and
after estimating the Monte Carlo variance on that realization
are discarded. Thus (T'),,..- and <T2>NM¢,/~ are tallied within
each realization and (T')g,,, (TZ)RW, and V¢, are tallied over
the ensemble of realizations. EVADE requires setting up Ry ¢
realizations and simulating Ry;c Ny ¢ particle histories.

In EVADE, we use batches of realizations to provide esti-
mates of the uncertainty (one-sigma standard error) on com-
puted quantities including the parametric variance. Quantities
are estimated as the average of the estimates on the batches
and the uncertainty is computed in the typical manner as a
function of the sample variance of these values:

1
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where B is the number of batches and uy, is the uncertainty
(standard statistical error) in the parametric variance.
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We choose to simulate only two histories on each realiza-
tion such that as many histories as possible (half of the total
histories) are used to contribute to the calculation of the total
variance. For both VADE and EVADE, we tally and equally
weight all simulated histories to estimate the mean transmit-
tance, i.e., using (T')g,, and (T')y,,.r as applicable for VADE
and average values of (T)y,,.. over ensembles for EVADE.

PROBLEM DESCRIPTION AND BENCHMARKS

Here we solve the stochastic, one-dimensional, neutral-
particle, absorption-only, mono-energetic, and steady-state
radiation transport equation with a normally incident beam
source of magnitude one:

oy(x, u, w
u% F LR =0, (79
O<x<Li —l<u<l, (7b)

YO,u) =6(1 —p), pu>0; Y(L,p) =0, pu<0, (7¢)
where y(x, 4, w) is angular flux, X,(x, w) is the total cross
section, and x, i, and w denote spatial, angular, and stochastic
dependence. Particle travel is restricted to the forward (u = 1)
direction via the particle flux boundary condition and lack of
particle interactions other than absorption. The locations of
external material boundaries are fixed, i.e., x € [0, L], while
either total cross sections, internal material boundary locations,
or both are varied uniformly. The stochastic total cross section
for material m of M material regions is denoted as a function of
the average total cross section, (X, ,,), a parameter defining the

range of possible values, ’Z\,,m, and a random variable uniformly
distributed from negative one to one, &,,(w) € U[-1, 1]:
(@) = () + Zemém(w). ®)

The location of stochastic internal material boundary m (of
M — 1) is denoted similarly (£, (w) € U[-1, 1]):
Xn(©W) = {Xm) + Xndm(w) 9

such that material chunk m has width

x1(w) ifm=1
Axp(w) = S xp(w) = X1 () fl<m< M (10)
L—XM_|((,<)) ifm= M.

Analytic and Semi-Analytic Benchmarks

The transmittance 7' (w) = ¥(L, 1, w) for a sample w from
the stochastic space is solved as a function of the sampled
slab’s optical thickness T(w):

T(w) = exp[-T(w)], (11a)

M
(@) = ) Zin(@)Axin(). (11b)
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The expectation of moment p of the transmittance for a
problem involving M independent material chunks is defined
by integrating over the probability space:

2M-1
E[T7] = () f f TP(W)dE, . . dEwdl: ... dly-1.

(12)
Eq. (12) becomes simpler if only total cross sections vary
(X, =.0Ym) or if only internal material boundary locations
vary (Z;,, = 0Vm).

In the case that only total cross sections vary, the expec-
tation of moment p of transmittance is solved using the ana-
lytic transmittance (Eq. (17)) and random variable definition
(Eq. (8)) as in Ref. [5]:
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Similarly, we derive the expectation of moment p for the case
involving random internal material boundary locations and
constant total cross sections:
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These analytic solutions were attained via the separability of
the integrals in Eq. (12). When both coefficients and material
boundary locations vary, we no longer have separability and
choose instead to numerically integrate Eq. (13) (using scipy):
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The parametric variance is solved as a function of the first
and second moment provided by Eq. (13), (14) , or (15):

= E[T?] - E[T). (16)

To solve for the total variance, we note that with analog
Monte Carlo and one history per realization, all transmittance
tallies T, are either zero or one such that all transmittance
moments (Eq. (3)) are equal and that in the limit of many real-
izations, the Monte Carlo simulation yields the transmittance
expectation computed by Eq. (13), (14), or (15):

m=1

(TR = {T" )R, P> (17a)
lim (T)g,, = E[T]. (17b)

Equations (17a) and (17b) enable analytic computation of the
total variance from Eq (2) based only on E[T]:

L ((T%)g,, —(T)%,,) = EIT] - E[T].
(18)
The Monte Carlo variance is analytically solved using
variance deconvolution (Eq. (1)) with the analytically solved

parametric (Eq. (16)) and Monte Carlo (Eq. (18) variances:
Vuc = Viee = Vp. (19)

Vi = lim
Ripi—> Rm; - 1



NUMERICAL RESULTS

We here apply VADE and EVADE to three different prob-
lems and compare against the analytic and semi-analytic solu-
tions defined earlier in the paper. Each problem investigated
has the same average cross sections and material boundary
locations (listed in Table I), but are differentiated by which
values contain uncertainty. The “Random Cross Sections”
problem contains the cross-section uncertainty described in
Table I while material location uncertainty is zero; the “Ran-
dom Boundaries” problem contains the random boundary un-
certainty described in Table I while cross-section uncertainty
is zero; and the third problem contains uncertainty in cross
sections and material boundary locations.

TABLE I. Stochastic Attenuation Problem Parameters
l lsz’m=1|m=2|m=3\

o) | - 09 | 015 | 06
T = 07 | 012 | 05
Gy | 00 | 20 | 50 | 60
T - 175 | 095 -

We first solve these problems numerically using VADE
and EVADE with a total of Nyor = 2 x 10® histories each
according to the parameters in Table II and choose the number
of batches for EVADE that yields two realizations per batch.

TABLE II. Higher-Fidelity Solver Parameters

VADE | EVADE
R =108 | Rye =10* || Ry = Rye = 108
Nigr =1 Nyc = 104 Nig =1 Nuyc = 2
B =N/A B=5x10’
Nror =2 x 108 Nror =2 x 108

Analytic or semi-analytic solutions to four quantities of
interest as well as those yielded numerically by VADE and
EVADE are listed in Table III. While in most applications the
average transmittance (7') and variance on that value caused
by input uncertainty Vp would be the results of interest, we
also provide the total variance V,,, and Monte Carlo variance
Vuc in an effort to help investigate the method. VADE and
EVADE were able to provide the correct solutions within sta-
tistical uncertainty. While VADE gives no estimate of the
uncertainty on the computed parameters, simple convergence
studies not shown here suggest Monte Carlo statistical con-
vergence. Through the use of realization batches, EVADE
produces estimates of statistical uncertainty; errors are roughly
the size of these uncertainty values as expected.

Secondly, we seek to compare the relative precision of
these methods as well as test whether the computed uncertainty
estimates are accurate. We solve the same three problems
1000 times each, but with 1000 times fewer histories (Nror =
2 x 10°) than in the previous, higher-fidelity solves. Specific
solver parameters are given in Table IV. We again choose the
number of batches for EVADE that yields batches of size two.

The average error yielded for each quantity by VADE
and EVADE is given in Table V as well as the average one-

TABLE III. Higher-Fidelity Simulation Representative Results

Random Cross Sections

Quantity | Analytic | VADE EVADE
(T) 0.083783 | 0.083981 | 0.083773 + 0.000020
Vp 0.005505 | 0.005637 | 0.005509 + 0.000022
Viot 0.076763 | 0.076749 | 0.076762 + 0.000026
Vuc 0.071259 | 0.071112 | 0.071253 +0.000018

Random Boundaries

Quantity | Analytic | VADE EVADE
(T) 0.078277 | 0.078828 | 0.078314 + 0.000020
Vp 0.003731 | 0.002782 | 0.003734 + 0.000021
Vi 0.072150 | 0.072140 | 0.072176 + 0.000025
Vuce 0.068419 | 0.069358 | 0.068442 + 0.000017

Random Cross Sections and Boundaries

Quantity | Semi-An. | VADE EVADE
(T) 0.104428 | 0.103672 | 0.104398 + 0.000023
Vp 0.010069 | 0.011029 | 0.010097 + 0.000024
Viot 0.093523 | 0.093503 | 0.093532 + 0.000028
Vue 0.083454 | 0.082474 | 0.083435 +0.000019

TABLE IV. Lower-Fidelity Solver Parameters

VADE | EVADE
R =10° | Rye =102 || Ry = Ruyc = 10°
Niot = 1 Nyc = 103 Nigr =1 Nyc = 2
B =N/A B=5x10*
Nror =2 % 10° Nror =2 % 10°

sigma uncertainty provided by EVADE and the number of
times the error was less than the uncertainty. For all quantities
except the total variance, EVADE was roughly an order of
magnitude more precise than VADE. The average error was a
little less than the average uncertainty for each problem and
quantity of interest, and the error was less than the one-sigma
uncertainty about 68% of the time, providing confidence that
the uncertainty estimates given by the batches—even batches
of only size two—are accurate.

The error in the total variance computed with VADE was
a little less than that computed by EVADE even though they
each used one history from the same number of realizations.
We believe the difference is an effect of estimating the total
variance on small batches (only two realizations) and averag-
ing these estimates. Additional investigation not documented
here shows that computation of the total variance with EVADE
without batches yields the same average error as VADE.

The propagation of uncertainty as a function of R and N
derived in Ref. [4] predicts that the precision of the mean is
maximized for a set number of histories with N = 1, falling
off monotonically as a function of larger N after that. We
believe that the greater precision achieved by EVADE over
VADE for values other than the total variance is caused by this
same mechanism suggesting that small values of N are likely



TABLE V. Lower-Fidelity Simulation Ensemble Results

Random Cross Sections

Quantity | (€)vaDE || (€)EvaDE | (W)Evape ’ e<u
(T) 0.00375 || 0.00052 | 0.00064 | 668/1000
Vp 0.00551 || 0.00054 | 0.00068 | 673/1000
Viot 0.00052 || 0.00065 | 0.00081 | 681/1000
Ve 0.00550 || 0.00044 | 0.00055 | 681/1000

Random Boundaries

Quantity | (e)vape || (€evape | Wevape | e<u
(T) 0.00333 | 0.00049 | 0.00062 | 658/1000
Vp 0.00525 || 0.00053 | 0.00065 | 674/1000
Viot 0.00053 || 0.00065 | 0.00079 | 661/1000
Vuc 0.00521 || 0.00043 | 0.00054 | 682/1000

Random Cross Sections and Boundaries

Quantity | (€)vape || (€)evape | Wevape | e <u
(T) 0.00468 || 0.00058 | 0.00072 | 681/1000
Vp 0.00621 || 0.00059 | 0.00077 | 702/1000
Viot 0.00057 || 0.00069 | 0.00087 | 707/1000
Vuce 0.00620 || 0.00047 | 0.00059 | 685/1000

optimal. It would be informative to perform an analytic study
on this relationship in the context of VADE and EVADE.

CONCLUSIONS AND FUTURE WORK

In this paper, we numerically demonstrated attainment of
parametric variance by estimating the total and Monte Carlo
variances and taking the difference. A non-intrusive vari-
ance deconvolution (VADE) implementation and an intrusive
embedded variance deconvolution (EVADE) implementation
were demonstrated. While each implementation was accurate,
EVADE was roughly an order of magnitude more precise than
VADE for all output quantities except total variance for which
VADE was marginally more precise. EVADE used batches of
realizations to accurately estimate uncertainty on the quantities
of interest. EVADE demonstrated use of as few as two particle
histories per realization and two realizations per batch to ac-
curately estimate quantities. Precision comparisons between
VADE and EVADE suggest that few histories per realization
are likely optimal. Both VADE and EVADE were numerically
demonstrated on different classes of uncertainty problems:
random cross section values, random material boundary loca-
tions, and problems involving both sources of uncertainty. In
addition, an analytic expression for transmittance moments
in a random material boundary attenuation problem was pro-
vided as well as an approach to obtain semi-analytic results
when both total cross sections and material boundaries contain
uncertainty. Finally, expressions were provided for parametric,
total, and Monte Carlo transmittance variance as a function of
these transmittance moments.

Whereas the parametric variance in the problems in this
paper originated from traditional random variables, we would
like to apply EVADE to solving for the variance caused by
stochastic material mixing. Specifically, we plan to implement

EVADE with Conditional Point Sampling (CoPS) [6], a new
algorithm for transport in stochastic media. Future work may
also include use of EVADE in problems involving both para-
metric variance originating from traditional random variables
and stochastic material mixing, possibly to solve for only one
of those contributions at a time. It would be informative to
apply Optimal-Cost Monte Carlo (OCMC) [2, 4], which uses
Lagrangian optimization to solve for optimal input parameter
values in Monte Carlo calculations, to VADE and EVADE,
both for the mean and the parametric variance. Future work
could also include application of VADE where a different
computational model is used for estimating the total variance
than the Monte Carlo variance, for example, with stochastic
media, estimation of the total variance with Chord Length
Sampling [1, 3] and estimation of the Monte Carlo variance
with realizations [2, 4].
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