
Initial data from the One-Dimensional Imager of Neutrons on Magnetized Liner Inertial Fusion experiments

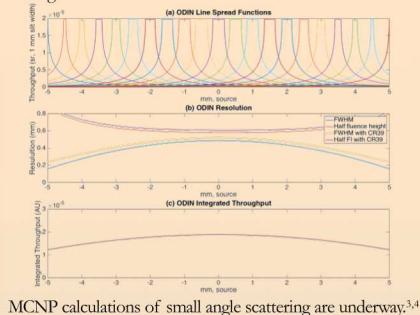
David J. Ampleford,^{*1} Carlos L. Ruiz,¹ David N. Fittinghoff,² Jeremy D. Vaughan,^{1,3} Kelly Hahn,^{1,2} Brandon Lahmann,⁴ Adam J. Harvey-Thompson,¹ Matthew R. Gomez,¹ Patrick F. Knapp,¹ Jose A. Torres¹

^{*} dample@Sandia.gov

¹ Sandia National Laboratories, Albuquerque, NM, USA; ² Lawrence Livermore National Laboratory, Livermore, CA, USA; ³ University of New Mexico, Albuquerque, NM, USA; ⁴ Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract: We have recently developed a One-Dimensional Imager of Neutrons (ODIN) for Magnetized Liner Inertial Fusion (MagLIF) experiments on Z. When coupled to other diagnostics, including x-ray imaging, we anticipate that locally diagnosing neutron emission will aid in characterizing regions of mix within the target. In this poster we describe the instrument, which consists of a 10-cm thick rolled edge W slit and CR39 detectors. We also show initial data obtained with ODIN and compare to other data from MagLIF experiments.

Slit design

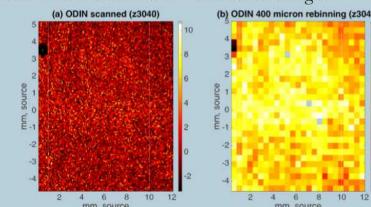

- Aim to diagnose neutron emission in MagLIF!
- Expected $\sim 3\text{e}2$ DD neutrons emission region is 10 mm tall, 100 μm diameter, motivating a one-dimensional imager.
- Thick W slit used as imaging element
 - 100 μm provides 1e-2 contrast.
 - High Z slit minimized small angle scattering
- Rolled edge slit design minimizes vignetting
 - 500 mm radius of curvature to view 10-mm tall target.
- Design includes 250- μm , 500- μm , 750- μm slit spacings.

Detector

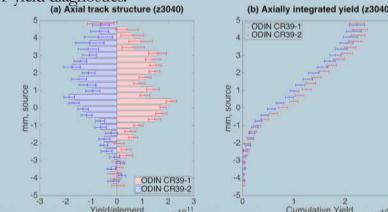
- CR39 plates were selected as the detector due to low sensitivity to x-rays and Bremsstrahlung radiation.²
- A 1 mm thick layer of high density polyethylene (HDPE) was positioned ahead of the CR39.
- Incident neutrons interact with the HDPE producing a proton, which has a much higher efficiency than neutrons in the CR39.
- Two detector magnifications provide confidence in data.

Performance estimates

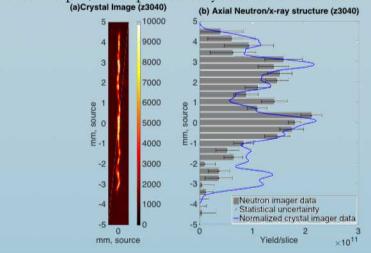
- We have developed an analytic estimate for the performance of ODIN
- Neglecting scattering, we can use the rolled edge geometry and the mean free path of neutrons in tungsten to infer the instrument performance as a function of height



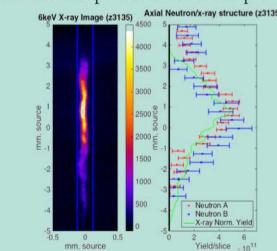
References


1. M.R. Gomez *et al.*, *PRL*, **113**, 155003 (2014)
2. M.T. Collopy *et al.*, *Rev. Sci. Instrum.*, **63**, 4892 (1992)
3. J.D. Vaughan *et al.*, *APS-DPP 2018*: GP11.00094

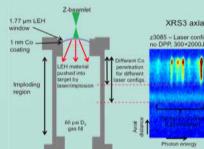
Data analysis


- CR39 plates are etched in NaOH for 5 hours to reveal tracks.
- Data is scanned with a microscope; image processing techniques are used to isolate DD neutron induced tracks.
- Raw data has high noise level, but rebinning at instrument resolution starts to show one-dimensional image.

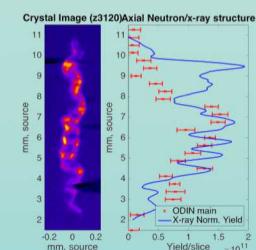
- Multiple CR39 plates at primary detector location show 1D image.
- We use the standard error in the mean to quantify noise.
- Efficiency estimates used to quantify emissivity; within factor of 2 of yield diagnostics.



- We can compare 1D neutron image with 1D profile from 6 keV crystal imager.
- Similar shapes; discrepancies may be indicator of mix.


Structure in neutron emission

- Continuity of stagnation region
 - To understand magnetization of the stagnation we assume that there is a continuous column of hot fuel
 - Confirming continuous neutron emission along the length of the column helps evaluate this assumption



Inferred mix

- Laser induced mix:
 - Previous laser configuration was inferred from spectroscopy to have considerable laser-induced mix

- An alternative approach to mix diagnosis is to evaluate relative neutron and x-ray emissivities from hot fuel (undoped)

