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2 I Benefits and Challenges to Explosive Bonding

Why explosive bonding? *—' Liner / Flyer plate
dﬂs fiow —) |
1. Rapid bond formation

——- Baseplate

2. Metallurgical bond (hermiticity )
3. Bond large surface areas (1,000 cm?)

Challenges
1. Delamination at the bond interface

2. Porosity along the bond interface and an
inconsistent (wavy) bond

3. Melting along the bond interface <
Metallurgical bonding across the bond interface.

, , High resolution scanning electron microscopy.
Bonding between two plates. Note the incomplete

‘bonding and porosity. Micro-computed tomography.




Testing in Extreme Environments with the Z machine

Z machine at Sandia National Laboratories
> Wortld’s most powerful and efficient laboratory radiation source

> Pulsed power system creates extreme environments for materials testing

0 —J Test chamber

Challenges
° Tests are sensitive to contaminates and require a clean environment
° Undesirable/dangerous compounds are often produced

o Tests are completed rapidly and require precise timing and control

This study explores the use of plastic explosives to close S

s Gas flow  o—) | |

a 6 inch gas flow valve in the Z machine
° Precise timing required Baseplate
° Valve hermetically sealed within ~100 ps

Schematic of explosive closure valve

o Cannot contaminate the test environment
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Explosive Bonding Parameters

Three primary process parameters determine Flyer Plate
J. Ribeiro et al. J.

the quality of a bond
Phys, Conf.

> Collision velocity (V) 7 . Series, vol. 500

> Collision angle () (2014), pp.
)
Base Plate /~ 052038.1-6

> Flyer plate thickness

It 1s favorable to keep the collision velocity below the speed of sound in the materials being
bonded (5-6 km/s in stainless steel)

Traditionally, ammonium nitrate and fuel oil (ANFO) 1s used because its detonation velocity
is between 2-3 km/'s

D —— —]

. -

> Faster closure speed

No wave Wave Weld | No weld
Z machine requires plastic explosives - \
=
: . g
> Detonation velocities between 6-7 km/s % Stratght Wavy with meltlayer
X 8 interface
Provides over ANFO: > ,
@ Jetting
> Cleanliness 1 N e
G No weld Wavy interface No jetting
E
]
=
>
a

° Improved timing

s

Collision velocity, V¢

M. Athar & B. Tolaminejad, Mat. & Design, vol. 86 (2015),
pp. 516-525
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Goals

The aim of this study is to determine the processing window for explosive bonding
using plastic explosives, similar to the work completed for explosive bonds fueled by
ammonium nitrate and fuel oil (ANFO)

To this end, the interfacial bond quality in 304L stainless steel plates explosively
bonded using plastic explosives is characterized and evaluated using:

o Metallography

o Ultrasonic testing

> Three-dimensional reconstructions from micro-computed tomography

> Mechanical testing (lap-shear, microhardness)
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¢ | Experimental Setup

15 process settings explored
> Flyer plate thickness: 0.125 in. to 0.25 in.
> Base plate thickness: 0.25 in.

Each plate sectioned after bonding for micro-
computed tomography (uCT) and mechanical

testing
le— Ultrasonic Testing—™>
Metallography 7
+ Hardness -t-==-=---- - =>
Section 1
Direction of
explosive
Metallography propagation
+ Hardness —======- = > Mechanical
Section 2 T:S?[ine;nlca
Metallography
+ Hardness =t=---=-=-- - =>
Section 3
f&— puCT—

2”
Schematic of the bonded plates demonstrating how
material was sectioned for different characterizations.
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Lap-shear test
specimen




Solid material | {

71 3D Reconstruction Method

Part to be reconstructed Prepare 2D 1mages‘
== for 3D reconstruction

Explosive
propagation
direction
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3D Reconstruction of Unbonded Volumes

Porous bond interfaces
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9 I Process Parameter Relationship with Bond Character
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10 I UTS from Lap-shear Tensile Tests
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No relationship between UTS and collision
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10 I UTS from Lap-shear Tensile Tests
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No relationship between UTS and collision

velocity or angle

o Parent material influences results

Possible weak dependence of UTS on bond

character

o Similar results for fluctuation and persistence

Outliers mask potential relationships
° Unidentified porosity contribute to spread in data




11 I Vickers Microhardness

Microhardness provides greater spatial fidelity compared
to lap-shear test
> Study local hardness variation across the bond interface and
into the parent material
Relate peak hardness to interface parameters:
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Conclusions

304L stainless steel plate was successfully bonded using plastic explosives
> Hermetically sealed interfaces were produced

° Processing window is narrower than that for ANFO

The characteristics of the bond interface (wavelength, persistence and fluctuation)
are correlated with collision velocity and angle

> More tests are needed to improve these relationships and expand the mapped process space

UTS as measured from lap-shear test is not correlated with processing parameters
or bond characteristics

o Parent material likely influences testing; obscures differences in bond strength and increases

spread

o Testing smaller, more homogenous areas along the interface by in-situ mechanical testing
using an SEM may improve understanding of mechanical strength across a bond

Spatial variation of mechanical strength across an interface can be identified using
microhardness.

° Peak hardness across a bond is related to processing parameters




