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2 Benefits and Challenges to Explosive Bonding

Why explosive bonding?

1. Rapid bond formation

2. Metallurgical bond (hermiticity )

3. Bond large surface areas (1,000 cm2)

Challenges

1. Delamination at the bond interface

2. Porosity along the bond interface and an
inconsistent (wavy) bond

3. Melting along the bond interface

Bonding between two plates. Note the incomplete

bonding and porosity. Micro-computed tomography
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Gas flow
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Metallurgical bonding across the bond interface.

High resolution scanning electron microscopy
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3  Testing in Extreme Environments with the Z machine

Z machine at Sandia National Laboratories

o World's most powerful and efficient laboratory radiation source

o Pulsed power system creates extreme environments for materials testing

System layout

Challenges

o Tests are sensitive to contaminates and require a clean environment

O Undesirable/dangerous compounds are often produced

O Tests are completed rapidly and require precise timing and control

This study explores the use of plastic explosives to close
a 6 inch gas flow valve in the Z machine

O Precise timing required

o Valve hermetically sealed within —100 [ks

O Cannot contaminate the test environment

EXPLOSIVE

Liner / Flyer plate

m- Gas flow

Baseplate 1-2'.1111Z.
Schematic of explosive closure valve



4  Explosive Bonding Parameters

Three primary process parameters determine
the quality of a bond

Collision velocity (Vc)

• Collision angle (p)
• Flyer plate thickness

\/c=Vd

Explosive

Flyer Plate

Base Plate

J. Ribeiro et al. J.

Phys, Conf.

Series, vol. 500

(2014), pp.

052038.1-6

It is favorable to keep the collision velocity below the speed of sound in the materials being
bonded (5-6 km/s in stainless steel)

Traditionally, ammonium nitrate and fuel oil (ANFO) is used because its detonation velocity
is between 2-3 km/s

Z machine requires plastic explosives

Detonation velocities between 6-7 km/s

Provides over ANFO:

• Cleanliness

• Faster closure speed

• Improved timing D
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M. Athar & B. Tolaminejad, Mat. & Design, vol. 86 (2015),

pp. 516-525



5  Goals

The aim of this study is to determine the processing window for explosive bonding
using plastic explosives, similar to the work completed for explosive bonds fueled by
ammonium nitrate and fuel oil (ANFO)

To this end, the interfacial bond quality in 304L stainless steel plates explosively
bonded using plastic explosives is characterized and evaluated using:

• Metallography

o Ultrasonic testing

• Three-dimensional reconstructions from micro-computed tomography

Mechanical testing (lap-shear, microhardness)
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6  Experimental Setup

15 process settings explored

• Flyer plate thickness: 0.125 in. to 0.25 in.

• Base plate thickness: 0.25 in.

Each plate sectioned after bonding for micro-
computed tomography (1.1,CT) and mechanical
testing

Metallography
+ Hardness
Section 1

4"
14— Ultrasonic Testin

',1/2"

Metallography
+ Hardness
Section 2

Metallography
+ Hardness  
Section 3

Mechanical
Testing I I I

Direction of
explosive
propagation
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Schematic of the bonded plates demonstrating how

material was sectioned for different characterizations.

30

125
2
w 20

T:n15

1 . 1 1 1 1 1 1 1 . . 1 1

• Unacceptable Interface
• Acceptable Interface
x Characterized

1 1 if

-
-

-
• -

• 
•
•
•

•

• •

•
•
•

200 400 600 800 1000 1200
Collision Velocity (m/s)

Bonded plates

characterized using

Lap-shear test
specimen



7 3D Reconstruction Method

Part to be reconstructed

Non-destructive

Micro-computed
tomography

Nikon Avonix M2 225/450 kV

Helical Scanner
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8 3D Reconstruction of Unbonded Volumes

Porous bond interfaces
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9 Process Parameter Relationship with Bond Character

Explosive
propagation
direction

Wavelength demonstrates a linear 0 8

dependence on collision velocity
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UTS from Lap-shear Tensile Tests
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UTS from Lap-shear Tensile Tests
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11 Vicicers Microhardness

Microhardness provides greater spatial fidelity compared
to lap-shear test

Study local hardness variation across the bond interface and
into the parent material

Relate peak hardness to interface parameters:
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12 Conclusions

304L stainless steel plate was successfully bonded using plastic explosives
O Hermetically sealed interfaces were produced

o Processing window is narrower than that for ANFO

The characteristics of the bond interface (wavelength, persistence and fluctuation)
are correlated with collision velocity and angle
O More tests are needed to improve these relationships and expand the mapped process space

UTS as measured from lap-shear test is not correlated with processing parameters
or bond characteristics
• Parent material likely influences testing; obscures differences in bond strength and increases
spread

O Testing smaller, more homogenous areas along the interface by in-situ mechanical testing
using an SEM may improve understanding of mechanical strength across a bond

Spatial variation of mechanical strength across an interface can be identified using
microhardness.
o Peak hardness across a bond is related to processing parameters


