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Motivation- Materials Challenges for DOE and DOD

Sodium Fast Reactors (SFR)

• Swelling of fuel cladding and duct at
high dose

• Radiation-induced embrittlement by
precipitation of brittle phases

• Corrosion from sodium

• Fuel-clad chemical interaction (FCCI)

Small Modular Reactors

• High damage due to non refuel design

• Stress corrosion cracking/Irradiation
assisted SCC

_
~III 11111111111110111111111111111

NUSCALE
POWER
MODULE

NATURAL
CIRCULATION
OF REACTOR
COOLANT
FLOW

- CONDUCTION

CONVECTION

Enargy from omelet.,

IllaCtilan heats .*
primary mac.r coolant

eau.. It to not Int
convottloan end notion.

buoyancy .rough N.
flaw. much lik• a chasm,
affect

, GRAVITY

Col.• ithatotool Pemxy
coo.. 'falls' to bottom

of reactor poroutont rental.
cycle continua..

STEAM LINE

FEEDWATER UNE

CONTAINMENT VESSEL

REACTOR VESSEL

SUPPORT TRUNNION

STEAM GENERATOR

RISER

50 MWe modular reactor design
Courtesy of NuScale Power



Friction Stir Welding (FSW)

• Traditional fusion welding melt
both pieces to be joined and
fuse upon cooling
• Has a large heat affected zone
and cause heterogeneous
dispersoid distribution

• Friction stir welding- a solid
state joining technique that
doesn't meft the workpiece
and mechanically intermixes
the joint

• A systematic comparison of
effect of welding and
irradiation is lac-king in
literature
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Dispersoid Behavior Inconsistent throughout
Literatu re

Proposed Mechanisms:

• Ballistic dissolution: Radiation
dissolves dispersoids

• Ostwald ripening: Dissolution
of smaller dispersoids and
redeposit on larger
dispersoids

• Irradiation-enhanced diffusion:
solute in solution redeposits
on larger dispersoids or
forms new dispersoids
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Research Objective

To understand how welding and irradiation affect the
microstructure and mechanical properties of ODS steel

MA956 in reactor relevant operating envelope

To understand how welding and irradiation affect the
microstructure and nanohardness of ODS steel MA956 at 450°C

up to 25 dpa
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Approach

I . Comparison of as received base material (BM)
and stir zone (SZ)

2. Assessment of microstructure at low dose (up
to 25 dpa)

3. Nanoindentation up to 25 dpa
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Alloy

MA956
(wt%)

lon Experiment Design

Fe Cr A1 Y20 3 Ti Mn Si Ni C Mo S P

Bal 19.93 4.75 0.51 0.39 0.09 0.08 0.04 0.023 0.02 0.008 0.006

• MA956
• Irradiation of tem bar samples with
5 MeV Fe2+ ions performed with 6
MV Tandem at Sandia National
Laboratories or Michigan Ion Beam
Laboratory
• Damage measured at 600 nm

using Quick Kinchin-Pease
with Ed=40 eV

• Raster Scanning
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lon Experiment Design (SNL)

• Irradiations performed at SNL on the 6 MV Tandem
• LabView controlled button heater used to maintain temperature
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on Experiment Design (MIBL)
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Microstructure Analysis

Irradiated Surface

Platinurn

Sample  A

— 10 ium 100 nm

MA956-Friction Stir Welded
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• Samples prepared via liftout method
using Focused Ion Beam (FIB) at MaCS
at CAES and at Naval Research
Laboratory (NRL)

• Cross section liftout maintains
integrity of surface while allowing
depth profiling of dispersoid
distribution

• Dispersoids imaged in high angular
annular dark field in STEM mode from
500-700 nm

• Dislocation loops and network imaged
in STEM BF

• Complementary Atom probe
performed at MaCS and NRL
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MA956: As received microstructure

HAADF

BF

Base Material (BM)

,Naszisarzazw--

SZ

141!V:.;-;

• Dispersoids much more visible with z contrast in HAADF images
• Qualitatively, fewer and larger dispersoids
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HAADF

BF

200 nrn

Effect of irradiation on BM (low dose)

0 dpa
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Dispersoid Evolution with Increased dpa (BM)
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• Evidence of small amount of coarsening with irradiation
• Increased diameter, decreased number density
• Attributed to Ostwald coarsening
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HAADF

BF

200 nm

Effect of irradiation on SZ (up to 25 dpa)
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Dispersoid Evolution with Increased dpa (SZ)
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• Increase in number density due to small dispersoids re-precipitating
post welding observed by l dpa

• Attributed to radiation enhanced diffusion
• Increased diameter and increased number dens*ty
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APT: Evidence of Re-precipitation?
Base metal, 25 dpa

(a) 132x132x258 nm3
74.1x106 atoms

(b)

Cr
Al
Y
o
Ti
Si

Ti

Stir zone, 25 dpa

(d) 129x129x169 nm
48.4x106 atoms

(e)

• Small precipitates seen in all tips of irradiated SZ

• No larger coarsened precipitates observed at 25 dpa
• Likely due to the low density of very lar e precipitates
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• Interesting implications- re-precipitation reverses softening of SZ

• Two different mechanisms potentially explain different evolution
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Evolution of Network Density
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• Network density correlated to strength and typically increases with
irradiation according to literature
• Small decrease in network line density with welding likely due to annealing
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Evolution of Dislocation Loops
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• Relatively large loops formed by I dpa suggest
recovery of lost strength from welding
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Overview of nanoindentation experiments

• Nanomechanics iMicro operated in dynamic
indentation mode (continuous stiffness mode) at
Purdue University

• Tests run in depth-controlled mode
• Max depth was set to —3000 nm for base metal and
—1000 nm for stir zone (20 nanoindents made in base
metal and in stir zone

• Results obtained are hardness and modulus as a
function of depth
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As received and As welded (0 dpa)
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Summary of Nanoindenation
Region Nanohardness [GPa] Yield strength

[MPa]

Average value St dev Average value

Base metal, as-welded 4.59 0.09 1326

Stir zone, as-welded 3.12 0.16 901

Base metal, 1 dpa 4.49 0.22 1330

Stir zone, 1 dpa 3.35 0.07 969

Vickers: Base metal, as-welded N/A 1059

Vickers: Stir zone, as-welded N/A 667

• Nanoindentation values consistently higher than
previous Vickers results
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Conclusions

• Dispersoids in the base material increased in
diameter and decreased in number density
• Attributed to Ostwald Coarsening

• Dispersoids in stir zone increased in both diameter
and number density due to re-precipitation of
dispersoids
• Attributed to Radiation enhanced diffusion

• Suspected hardness increase in SZ confirmed via
nanoindentation. Nanoindentation values not
consistent with previous measurements.
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• Coarsening mechanisms (increased diameter, decreased number
density and flatter distribution) consistent with previous results

• Mechanical testing reported softening with friction stir welding
• Larger grains, fewer dispersoids

4111w4;  
IF101:1.12:1111611111614: 1 t 

--ilk- L--
11111111111111111111110111111111



Base Material: 450°C up to 200 dpa
0 dpa

50 dpa
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Dispersoid Evolution with Increased dpa (BM)
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• Evidence of Ostwald coarsening with irradiation
• Continues low dose behavior of increased diameter, decreased number density

• Large jump in diameter at 200 dpa- formation of voids?
• TEM characterization at MFC scheduled for this summer
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Formation of voids or coarsening ofY-AI-0?

trz.,•-"-:•re."":"C gr. 41.

• STEM HAADF- Z contrast so Y-AI-0
could look like a void

• CTEM BF can be used to identify by
focusing series for voids, but time
consuming and difficult to get
accurate sizes

• Best approach suggested by Parish et
al with a combination STEM HAADF,
STEM through focus imaging coupled
with high fidelity EDS (ChemiStem)
• Will be attempting .in next RTE to

approximate precipitate coarsening
versus void swelling

Parish, C. M., Field, K. G., Certain,A. G., & Wharry, J. P. (2015). Journal of Materials Research, 30(9), 1275-1289.
https://cloi.org/10.1557/jmr.2015.32
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• Volume fraction suggest new large phase forming (suspected voids) by 200 dpa

• EDS Scans inconclusive
• Plan on using ChemiStem to get better idea of what these features are
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BM,
50
dpa

BM,
100
dpa

APT confirms large AI-0 and Y-AI-0

Al Y-A1-0 Cr-C Y-Al-CrC

• CrC precipitates were not observed at I or 25 dpa

• Ti co-located with Cr-C as well
. . nOt.........:! ,, : ' - " L-1
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Dispersoid Evolution with Increased dpa (SZ)
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• Rapid growth at I 00 dpa and beyond likely due to
some void swelling similar to jump at 200 dpa for BM
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• Similar to BM-volume fraction suggest new large phase forming by 100
dpa

• EDS Scans inconclusive
• Plan on using ChemiStem to get better idea of what these features are
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Qualitative coarsening observed with APT in
SZ

Al Y Y-AI-0
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Stir zone, 25 dpa
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Significant Findings

• With irradiation, coarsening was observed in the
dispersoids in the base material up to 200 dpa.

• The dispersoids in the stir zone exhibited both
coarsening as well as potential re-precipitation of
dispersoids lost during the welding process suggesting
that strength lost due to welding process maybe
recoverecivia irradiation.

• At high dose (200 dpa for BM and 100 dpa for SZ),
suspected irradiation induced voids may have formed.

• Preliminary APT results suggest formation of CrCs by
50 dpa as well as coarsening of AI-0 and Y-AI-0

• Dislocation microstructure stable in BM but continues
to evolve slowly in SZ
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Future Work (in progress)

• Temperature
dependence of BM, SZ
• Irradiations funded by
RTE 17-1032

• Characterization funded
by RTE 18-1396 (in
progress)

• Effect of welding
conditions
• Irradiations funded by
RTE 17-1032

• Characterization funded
by RTE 18-1396 (in
progress)
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400°C 450°C 500°C

1
MA956-BM
MA956-FSW-H

MA956-BM
MA956-FSW-H

25
MA956-BM
MA956-FSW-H

MA956-BM
MA956-FSW-H

50

MA956-BM,
MA956-FSW-H
MA956-FSW-M

MA956-BM,
MA956-FSW-H

MA956-BM
MA956-FSW-H
MA-956-M

I 00

MA956-BM,
MA956-FSW-H
MA956-FSW-M

MA956-BM
MA956-FSW-H
MA-956-M

MA956-BM,
MA956-FSW-H
MA956-FSW-M

200

MA956-BM
MA956-FSW-H
MA956-FSW-M

•

Sample Condition Matrix
MA956-FSW-H: high heat input
MA956-FSW-M: medium heat input
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Dispersoids or voids?

MA956, unirradiated

Black features are dispersoids

HT9, 440C, 188 dpa

Black features are voids


