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Generalized Canonical Polyadic (GCP) @ﬁg{}g‘:a..
Tensor Decomposition aboratones

a | min F(X, M) = Zf L 5]
n . n 8 1€
X ~ = M — s.t rank(M) < p \ [ = multi-index
) o — Q =all indices
" y oy |
d-way data d-way low-rank rank-one rank-one - * Standard CP [Hitchcock, 1927; Carrol &
tensor of model tensor of size component component component Chang, 1970; Harshman, 1970]
size n® n? and rank r

=t =2 = f(@,m) = (w=m)?
. e Poisson CP [Welling & Webber, 2001; Chi

X ~M where M= Z Ai(:,7) 0 Aa(:,j) o0 Ay(s, ) & Kolda, 2009]

j=1 f(x,m) =m — xlogm

. d
Low-rank: ~ rank(M) <7 < n * Logistic CP, etc. [Hong, Kolda, Duersch,
2018]

Factor matrices: Ay € R"*" for k € {1,...,d} f(x,m) =log(m + 1) — xlog(m)
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Gradient-based Optimization @ﬁﬁﬁﬂ‘ﬁau_
for Fitting the GCP Model Laboratories 1~

Gradients computed via a sequence of MTTKRPs:
A | min F(XX,M) = z:lezz,mZ d 4
G =L vz,  MTTKRP
s.t. rank(M) <r YT OA, (k)'k\
/ tensor unfolded in
Define: Elementwise partial gradient tensor, : mode k into matrix
i d gradient for mode £ei d—1
same size as data tensor =n 4 4 5 A e of sizen Xn
sizen Xr
B gj; (zi,m;) ifi €€ MTTKRPs can be computed efficiently...
Y Yi = 0 ) A— Bader & Kolda, SIS.C, 2007 — Dense and sparse
Phan, Tichavsky, Cichocki, 2013 — Sequence
Smith et al., IPDPS 2015 — Sparse
Define: Khatri-Rao product in all modes but Kaya & Ucar, SC 2015 — Sparse
one of size n 1 x r Li et al., IPDPS 2017 — Sparse
Hayashi et al., 2017 — Dense
2, =A40 - OA10OA, 10O A Ballard, Knight, Rouse, 2017 — Dense

Hong, Kolda, Duersch, 2018
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Stochastic Gradient Descent (SGD) for GCP @labm"es S

30-Second Tutorial on SGD

2/28/2019

Standard gradient
any

\_

! 0 otherwise

G = Y (k) Zj Cost: O(Tnd) flops

Stochastic gradient

L9l

-

A~

Random sparse tensor: W) g = nnZ(W) < nh

—~

Y=wWxY
0 if w; =0

ék = ?(k)Zk Cost: O(rds) flops

Theorem: IE[W] =1= ]E[ék] = Gy,
all ones
tensor

)
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Stochastic Weight Matrix: Single Element Ay .

d

Goal: Random sparse tensor of size n

Choose random tensor entry
Define random tensor with single
nonzero as follows

3 nd ifi==¢
w; — .
0 otherwise

\ ----------------------- - o

N o=

-——————————,

>
é Proof:  E(w;) = p; - n® 4+ (1—p)-0
= 1
d
—_ — 1 °
nd "
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such that every element has an expected value of 1

Shortcoming of sampling only single element...

Higher variance in stochastic gradient

Only one row of the unfolded tensor has a
nonzero so stochastic gradient only nonzero
for single row of each factor matrix

Gradient = O(rd) work versus
Update = O(rdn) work

Can afford more work per gradient
calculation!
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such that every element has an expected value of 1

Stochastic Weight Matrix: Multiple Elements

Goal: Random sparse tensor of size n%

: : \
! 1. Choose s < n% random tensor entries (with replacement) |
1 2. Define random tensor with up to s nonzeros as follows :
I
i . :
: . # times i sampled !
| Wi = "n |
1 S I
\ / . : :
| S S A A S R S A R — -7 Benefits of sampling multiple elements...
* Lower variance in stochastic gradient
Claim: IE[W] =1 * Gradient = O(rds) work in line with
: : Update = O(rdn) work
S| proof:  E(a;) = E(# times ¢ sampled) d P | (rdn)
S : v) — 5 Downside...
= . .
— s L p * If data tensor is sparse, few entries
= Sn nt =1 corresponding to nonzeros will be chosen
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Stratified Sampling Decreases Variance ) .

For very sparse tensors, the likelihood of getting a
nonzero is exceedingly small....

Results by Needell, Srebro, and Ward (2013) argue for
biasing the sampling toward functionals with higher
Lipschitz smoothness constants

/Consider Poisson loss...

f(m;z) =m — xlogm

f/(m;0)=1 = L=0

f'(m;1)=1—1/m =L unbounded as m | 0
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Stochastic Weight Matrix: Stratified Sample @ aboratres

d

Goal: Random sparse tensor of size n“ such that every element has an expected value of 1

1. For each partition ¢
a) Choose s, K [£1,| random tensor entries from (., (with
replacement)
b) For eachi € Q,, the corresponding entry of the weight

4

nonzeros

oS T N Em Em .y,
L ————

tensor is
Q)
w; = # times ¢ sampled - M
L —— S-ﬁ __________ »
Claim: E[W] =1

Q)
9| Proof: E(w;) = E[# times i sampled] - [$2]
1 S¢
=
= L7

pr— Se . . =
1972,
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Rejection Sampling for Zeros in Sparse Tensor

= Most SGD-based tensor methods
ignore zeros

= Treating them as “unknown”
= |n contrast, we include them

= Zeros not stored explicitly
= Generate candidate random index

= Reject if in list of nonzeros
= Can be expensive!

I E EE EE  —E—————
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Dependence on Sample Size Laboratories |

Tensor size 100 x 100 x 100 x 100 and rank r=5

10" ] | | | | | =
m— g-samples=500 ]
m—— g-samples=1000 |
* g-samples=2500 | |
= e g-samples=5000 )
T SRS B s g-samples=10000 | |
3 oL |
g 107 C ]
8 T :
L .
s [ :
g Standard CP, i.e., f(x,m) = (x — m)? |
3 L i 4-way 100 x 100 x 100 x 100 Tensor, Rank = 5
£ 10F # variables = 2000 e
TR ADAM plus Step / 10 if progress stagnates (0.1 — 0.001) §
I Dotted lines show individual runs 1
I Solid lines show 75% percentile i
10-2 | =5 PSS T R % | | |
0 10 20 30 40 50 60

Time (sec)
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Chicago Crime Data

= 4-way count tensor

= 6,186 Days GCP-Binary
= 24 Hours of the Day Rank = 10
= 77 Community Areas s = 30,000

f(z,m) =log(m + 1) — zlog(m)
1100 sec. (versus 65 sec. CP-ALS)

= 32 Crime Types
= Non-zeros: 5,330,673

= Storage: 0.21GB for sparse tensor
= Distribution of entries

= 0:98.54%

= 1:1.33%

= >2:0.12%
= Using binary version (every nonzero changed to 1)

= Obtained from FROSTT
(http://frostt.io/tensors/chicago-crime/)

= Data originally from Chicago Data Portal
(https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-g8t2)
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Application to Sparse Crime Binary Tensor

2/28/2019

_“NWAhOIOON0O

10




Sandia -
National |7 G
Laboratories '

Related Work

= SGD for Matrix Decomposition

= Gemulla et al., KDD’11 — Distributed SGD (DSGD) method: Partition matrix
into blocks, run parallel SGD on independent blocks, cycling through the
blocks in a way that ensures correctness. Only uses nonzero entries.

= Zhuang et al., RecSys’13 — Fast Parallel SGD (FPSGD) method: Matrix
factorization in shared memory environment. No theoretical analysis. Only

uses nonzero entries.

= SGD for Tensor Decomposition

= Mardini et al. (2015) — OnlineCP uses SGD for tensors that are streaming,
one slice at a time

= Maehara et al., AAAI-16 — Tensor can be written as sum or average of a
finite(?) number of tensors. Proposes SGD plus several variations

= Ge et al. [6] consider SGD for symmetric tensor decomposition

= Tensor Sketching
= Acar et al. [1] show that, for dense tensors, it is heuristically possible to
recover a full tensor decomposition with only a sketch of the data
= Jain and Oh [11] and Bhojanapalli and Sanghavi [3] more formally prove
under what conditions sketching works, albeit with a focus on orthogonal
symmetric tensor decomposition
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Conclusions, Future Work, Plosrcs S
- @
2 References
~
= Conclusions
= GCP not amenable to scaling because gradient “dense”
See also MS305: = Developed GCP stochastic gradient
Computing = Use stratified sampling for sparse tensors
Tensor = Recommend #samples = O(rnd)
Decompositions = Future work
4:10-5:50PM
Ballroorn 100BC = Release for MATLAB Tensor Toolbox

= Parallel implementation (with Eric Phipps — GenTen)
= Distributed implementation (with Karen Devine)

= References

= D.Hong, T. G. Kolda, J. A. Duersch. Generalized Canonical
Polyadic Tensor Decomposition. arXiv:1808.07452, 2018

= T.G. Kolda, D. Hong, J. A. Duersch. Stochastic Optimization for
Large-Scale Tensor Decomposition, in preparation
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