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Generalized Canonical Polyadic (GCP)
Tensor Decomposition
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d-way data
tensor of

size nd

d-way low-rank
model tensor of size

nd and rank r

X R-_, M where M =

Low-rank:

Factor matrices:

r

+

rank-one
component
j = 1

., 4

rank-one
component
j = 2

rank-one
component

j = r

Ai(:, A 0 A2(:, j) 0 • • • o Ad(:, .1)
i =1

rank(M) < r < nd

Ak E l't"r for k E { 1, • • • , d }

a_
u
0

min F(X, M) --
iES2

s.t. rank(M) < r

f (xi, mi)

i = multi-index

SI = all indices

• Standard CP [Hitchcock, 1927; Carrol &

Chang, 1970; Harshman, 1970]

f (x,m) = (x —7-1-)2

• Poisson CP [Welling & Webber, 2001; Chi

& Kolda, 2009]

f (x,m) = rn — x log rn

• Logistic CP, etc. [Hong, Kolda, Duersch,

2018]

f (x , m) = log(m, + 1) — x log(m)
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Gradient-based Optimization
for Fitting the GCP Model
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a
c.)

min F(X,M)

iEQ

s.t. rank(M) < r

f (xi, mi)

Define: Elementwise partial gradient tensor,
same size as data tensor = Tld

/ {0 f  i
Om X i , Mi)

Yi =
0

ifiESZ

otherwise

Define: Khatri-Rao product in all modes but
one of size nc1-1 x r

Zk = Ad ®•••® Ak+1 Ak-1 0 A1

Gradients computed via a sequence of MTTKRPs:

G k 
OF 

= (k)Z k
OAk

/
gradient for mode
k factor matrix of

size n x r

Nr-1(

RH0

tensor unfolded in
mode k into matrix
of size n x nc1-1

MTTKRPs can be computed efficiently...

• Bader & Kolda, SISC, 2007 - Dense and sparse

• Phan, Tichavsky, Cichocki, 2013 - Sequence

• Smith et al., IPDPS 2015 - Sparse

• Kaya & Ucar, SC 2015 - Sparse

• Li et al., IPDPS 2017 - Sparse

• Hayashi et al., 2017 - Dense
• Ballard, Knight, Rouse, 2017 - Dense

Hong, Kolda, Duersch, 2018
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Stochastic Gradient Descent (SGD) for GCP
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min f (x)

Gradient Descent (GD)
a = learning rate

x(t+1) (t) (t)= x — ag

Stochastic Gradient Descent (SGD)

x(t+1) = x(t) — cv:g(t)
E[gm] g(t) f (x(t))

Adam (Kingma & Ba, 2015)

Adaptive momentum SGD

 Em.

Standard gradient

Stochastic gradien

.

.

yi
if i E Q

0 otherwise

Gk = Y(k)Zk Cost: 0(rnd) flops

Random sparse tensor:

'-' = 17V *

{ivi, • gmf (x i, mi) if iv, / 0

0 if 71)2 = 0
yi =

= (k)z-Ak Cost: 0 (rds) flops

Am,

Theorem: E[W] = 1 -44Gk] = Gk
all ones
tensor _}
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Stochastic Weight Matrix: Single Element
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Goal: Random sparse tensor of size nd such that every element has an expected value o

1. Choose random tensor entry
2. Define random tensor with single

nonzero as follows

1-15i ={nd if i =

() otherwise
♦

Claim:

Proof:

qlV] = 1

(thi) = pi • nd + (1 p i)
1

= • n-
,
= 1

nd

Shortcoming of sampling only single element...

• Higher variance in stochastic gradient

• Only one row of the unfolded tensor has a
nonzero so stochastic gradient only nonzero
for single row of each factor matrix

• Gradient = 0 (r d) work versus
Update = 0(rdn) work

• Can afford more work per gradient
calculation!
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Stochastic Weight Matrix: Multiple Elements
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Goal: Random sparse tensor of size nd such that every element has an expected value o

1. Choose s« nd random tensor entries (with replacement)
2. Define random tensor with up to s nonzeros as follows

wz _
times i sampled rid

s

1
Claim:

Proof:

'117\71 = 1
1K,(# times i sampled) 

• n
d

s
1
nd 

• nd

s

Benefits of sampling multiple elements...

• Lower variance in stochastic gradient

• Gradient = 0(rds) work in line with
Update = 0(rdn) work

Downside...

• If data tensor is sparse, few entries
corresponding to nonzeros will be chosen

2/28/2019 Kolda - CSE19, Spokane, WA



Stratified Sampling Decreases Variance
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For very sparse tensors, the likelihood of getting a

nonzero is exceedingly small....

Results by Needell, Srebro, and Ward (2013) argue for

biasing the sampling toward functionals with higher

Lipschitz smoothness constants

Consider Poisson loss...

f (m; x) = Tr/ — x log In

f(m; 0) = 1   L = 0

(m; 1) = 1 — 1/ m L unbounded as m 0
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Stochastic Weight Matrix: Stratified Sample
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-M-

Goal: Random sparse tensor of size nd such that every element has an expected value of 1

• ..‘

1. For each partition -e
a) Choose st « ge l random tensor entries from fie (with

replacement)
b) For each i E ae, the corresponding entry of the weight

tensor is

times i sampled Al 

1
•

Claim: i-4:.:[ * = 1

Proof: E4,(iv2) = E[  // times i sampled] •

1 1S-2,d
= st    = 1

W sf

Al
st
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Rejection Sampling for Zeros in Sparse Tensor
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Most SGD-based tensor methods
.
ignore zeros

Treating them as "unknown"

In contrast, we include them

Zeros not stored explicitly

Generate candidate random index

Reject if in list of nonzeros

Can be expensive!
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Dependence on Sample Size
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Tensor size 100 x 100 x 100 x 100 and rank r=5
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g-samples=500

g-samples=1000

g-samples=2500

g-samples=5000

g-samples=10000

Standard CP, i.e., f (x , = (x — m)2
4-way 100 x 100 x 100 x 100 Tensor, Rank = 5

# variables = 2000
ADAM plus Step / 10 if progress stagnates (0.1 — 0.001)

Dotted lines show individual runs

Solid lines show 75% percentile

30

Time (sec)

40 50 60
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Chicago Crime Data
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• 4-way count tensor
6,186 Days

24 Hours of the Day

77 Community Areas

32 Crime Types

Non-zeros: 5,330,673
Storage: 0.21GB for sparse tensor

Distribution of entries
0: 98.54%

1: 1.33%

> 2: 0.12%

• Using binary version (every nonzero changed to 1)

• Obtained from FROSTT
(http://frostt. io/tensors/chicago-crime/)

- Data originally from Chicago Data Portal
(https://data.cityofchicago.org/Public-
Safety/Crimes-2001-to-present/ijzp-q8t2)

GCP-Binary

Rank = 10

s = 30,000
(x m) = log(m + 1) — x log(m)

1100 sec. (versus 65 sec. CP-ALS)

City of Chicago Community Areas and 'Sides'
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Related Work
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SGD for Matrix Decomposition
Gemulla et al., KDD'11 — Distributed SGD (DSGD) method: Partition matrix
into blocks, run parallel SGD on independent blocks, cycling through the
blocks in a way that ensures correctness. Only uses nonzero entries.
Zhuang et al., RecSys'13 — Fast Parallel SGD (FPSGD) method: Matrix
factorization in shared memory environment. No theoretical analysis. Only
uses nonzero entries.

SGD for Tensor Decomposition
Mardini et al. (2015) — OnlineCP uses SGD for tensors that are streaming,
one slice at a time
Maehara et al., AAAI-16 — Tensor can be written as sum or average of a
finite(?) number of tensors. Proposes SGD plus several variations
Ge et al. [6] consider SGD for symmetric tensor decomposition

Tensor Sketching
Acar et al. [1] show that, for dense tensors, it is heuristically possible to
recover a full tensor decomposition with only a sketch of the data

Jain and Oh [11] and Bhojanapalli and Sanghavi [3] more formally prove
under what conditions sketching works, albeit with a focus on orthogonal
symmetric tensor decomposition
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Conclusions
GCP not amenable to scaling because gradient "dense"

Developed GCP stochastic gradient

Use stratified sampling for sparse tensors

Recommend #samples = 0 (rnd)

Future work
Release for MATLAB Tensor Toolbox

Parallel implementation (with Eric Phipps — GenTen)

Distributed implementation (with Karen Devine)
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