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Higher order elements Sierra/SD
(acoustic formulation only)

• Element formulation:
• Hi-conforming hierarchical p-FEM shape functions*

Integrated Legendre polynomials

• Internal element variables statically condensed
vertex, edge and face unknowns remain

• Implementation:
• Based on hp3d code from UT Austin (Demkowicz et al.)
• Other options possible, but very convenient (free coarse problem,
• Hex8, Tet4 or Wedge6 mesh internal edge-face-volume data

structures dial in polynomial degree on the fly
• Parallel assembly and solution
• Planned for Release 4.50 (Summer)
• Acoustic Only - Elasticity planned for 2019

* Finite Elements in Analysis and Design (2010) 474-486
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Higher Order Elements with Infinite
element absorbing boundary

Test on 1D wave guide
— Test on 3D spherical domain with offset loading —
• Using 3rd order P-Elements in interior with 6th order Infinite elements
• Reproduces pressure contours of infinite domain
• No reflections observed
• Higher order elements allow us to coarsen mesh — only one element between

hollow sphere and boundary
• Geometry still approximated by linear element
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Higher order elements
(local solve strategy)

• Preconditioning Strategy
• goal: reduce memory and computations
• local solves associated with edges and vertices
• global solve for p = 1 sub-block (readily available)
• Closely related strategy by Schoberl et al.*
• Symmetric Gauss-Seidel implementation (additive too)

edge solves
(forward)

vertex solves**
(forward)

* IMA Journal of Numerical Analysis (2008) 28, 1-24
** economic version (energy minimization)

edge solves
(backward)
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vertex solves local +

(backward) I

global (coarse)
solve

global 1
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Loosely Coupled Structural Acoustics

• Developed through the use of the Navy
Standard Coupler (NSC)

• Allows one executable for Structure
subdomain, one for Acoustic subdomain

10

zFo
LL1o,

• Able to achieve 2nd Order Accuracy through 1,
GSS method

ioe 

• Partitioned allows flexibility for MPMD
coupling with other software, e.g.,
Sierra/Solid Mechanics

• Eliminates matrix conditioning issues by
separating structure and acoustic matrices

• Predictor/corrector coupling has many
options that will be explored in future work
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Generalized serial staggered (GSS) algorithm

Transfer predicted velocities on FSA:
vP(tn+1) = va(tn+1) = vo(tn+1)

Solve structure do-
main for 11(tn+l) on Qs

Solve acoustic do-
main for 0(0+1-) on QA

Transfer corrected pressures on FSA:
tsC(tn+1) ta(tn+1) p(tn+1)n

• Assumptions behind usage
• Time steps are sufficiently small for accuracy

• No need for sub-iterations between physics solvers for stability

• Second order accurate predictor + Newmark beta = second
order time accurate coupling

• Adams-Bashforth predictor for structural velocities:
vn+1P 3 1

vn + -
2
Ate - 

2 
Atan-1
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Comparison of Infinite Elements and

PML

Infinite Elements

■ Time and frequency domain
formulations are identical (same
matrices)

■ Restricted to homogeneous
media on ellipsoidal domains

■ Built-in capability for computing
far-field pressures (outside of
acoustic mesh)

PML

• Originally restricted to
frequency domain solutions

• Works on arbitrarily shaped
convex domains (with corners)

• Can also absorb evanescent
waves, and in some cases works
on heterogeneous domains

• No capability for computing far-
field pressure
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Infinite Elements

■ Conjugated Astley-Leis

■ Time Domain, Frequency Domain, Eigen

■ Legendre Polynomials to Order 19

■ Ellipsoidal Domain

■ Walsh et al "A comparison of transient infinite elements and
transient kirchhoff integral methods for far field acoustic
analysis" Journal of Computational Acoustics (2013)
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Perfectly Matched Layers
WT F4

• Undamped solution of wave equation: e

• this wave will propagate indefinitely in the x direction

• Complex Coordinate System:

• = a(x) ib(x)
• Wave Equation becomes:

• 
C 
ik"±" 
= C

i(—ka(x)+ikb(x)) = e—kb(x) eika(x)

• Damped Wave Equation

ikx
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• Bunting et al, "Parallel Ellipsoidal Perfectly Matched Layers
for Acoustic Helmholtz Problems on Exterior Domains"

Journal of Computational Acoustics, 2018

• Frequency Domain Only
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Slide 9

WTF4 l would just set a(x) = x
Walsh, Timothy Francis, 7/24/2014



Results: Infinite Element - PML
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For a fixed level of accuracy
• PML required many less

iterations than infinite
elements

• PML solution times were
much faster

• In frequency domain, PML
is clear winner over infinite
elements

Unclassified Unlimited Release



SPL on Boundaries of PML at 910 Hz.
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Doubled Wetted Shell-Acoustics

• Modeling of thin shell structures fully immersed in a fluid.
• Direct request from Navy.
• Hopefully will also be useful for internal use cases

Shell

Fluid 2
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Example: Floating Fuel Tank Example: Immersed Thin Structure
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Cavitation
*: Bleich-Sandler (1970) paper; 400 Elements per length scale
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Very Large Problems in Structural Dynamics

■ How large of a matrix system A.x=b can we solve?

High Performance Computing/parallel processor computing

Strong scaling: how the solution time varies with the number of processors for a
fixed total problem size

Weak scaling: how the solution time varies with the number of processors for a
fixed problem size per processor

"Strong and Weak Scaling of the Sierra/SD Eigenvector Problem to a
Billion Degrees of Freedom," Gregory Bunting, SAND2019-1217
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Some scaling results of Sierra/SD
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How do you know the number of processors needed?

Mesh Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

NumProc
1
2
4
8
16

36
72
144
288
5 76
1152 ._
2304 .
4608
9216
18432

-

Table 2. Matrix of Successful Sierra/SD Runs

Consider: speed, memory usage, and availability!
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The End.
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