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This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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2 | Motivation

Manufacturing Battery Performance
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esostructure

Length scale

Hutzenlaub (2012)
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Processing
Coupled electrochemical-mechanical effects at mesoscale connect battery manufacturing and performance
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Computational representation of Representation and role of Discrete element method
imaged electrode mesostructures conductive binder morphology mesostructure generation

N

NMC cathode effective property

Electrochemical-mechanical Future directions in electrode

o prediction and upscaling discharge simg,_of NMC balf cells mesoscale modeling
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Mesoscale geometry from CT data using CDFEM
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Detailed 3D reconstruction and image processing necessary to get usable mesostructure data

Roberts et al JES 2014, Roberts et al JEECS 2016
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Binder weight | Dense volume | Porous volume BB
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Resolving conductive binder in 3D 1maging difficult

° Binder often neglected, assuming non-active void space 0.08 — —
is electrolyte 0.10 0.28 0.40

° Limited imaging results can hint at binder location
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Nanoporosity of CBD i CBD filled Cathode/ [
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Amorphous binder is significantly nanoporous
© 47% Zielke (2015); 45% Grillet (2016)

> 5% 1onic conductivity of pure electrolyte

0.05 0.1 0.15 0.20

Phase Fraction / norm.

Graphite; Jaiser et al. (2017) LCO; Komini Babu et al (2015)

How are electrode-scale properties affected by the inclusion of binder? How does the morphology matter?
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6 | Binder bridge morphology approaches

Level-set methods
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Stochastic method

Two level-set morphologies visually bracket the range of stochastic morphologies

UNCLASSIFIED - DRAFT Trembacki (2017), Mistry (2018)



7 I Why does the morphology matter?
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Binder has strain- (e.g. lithiation-) dependent properties
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g | Effective electrode property calculations

Calculate effective transport properties for upscaling

o Particle specific surface area

> Electrical conductivity

) :
Tortuosity 0.8125

0.7500
0.6875
0.6250

NMC image data from Ebner (2013)
> 90, 92, 94, 96 wt% NMC (remainder 1:1 CB:PVDF)

> 0, 300, 600 & 2000 bar calendering
° 100 um x 100 um x 60 um domain (20 realizations eac

° Binder bridge (porous) morphology approach

Effective properties are an important first step for upscaling mesoscale data

3/12/2019 UNCLASSIFIED - DRAFT Trembacki, in preparation
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Particle-Electrolyte Surface Area
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* More particle surface area available with
non-uniform morphologies
* Nanoporous binder decreases bare particle
surface area, but binder area is porous
* Surface are much less than theoretical
3/12/2019

Porous binder and morphology considerations

dtheoretical

Non-uniform binder:
* Increases tortuosity
* Decreases conductivity

Nanoporosity:
* Increases tortuosity
* Increases conductivity
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!
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10 | Effective electrode property calculation results — Transport

, Out-of-plane tortuosity Out-of-plane conductivity
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Bruggeman relationships must be re-calibrated to fit simulated data
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11 | Discrete Element Method (DEM) mesostructure |
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intermediate
microstructure

initial microstructure

| porosity: 90% compression

+  height: 525 um (drying)

width: 100 . —

porosity: 50%
height: 100 um
width: 100 um

compression
(calendering)
>
fixed fixed
dimension dimension
iodi iodi compressed
periodic * periodic : p
boundary boundary microstructure

final ;
’ ‘ * porosity: 30%
K il comptession ¢ expand CBD 2x 3 4 . hf.:ight: 66 um
e periodic boundary * create FEM mesh ‘ e width: 100 um

Uniaxial compression with granular and Brownian forces enable study of AM consolidation and CBD aggregation
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CDFEM mesh of DEM-generated mesostructures
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13 I Comparison of image- and DEM-based mesostructures
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All simulations for T=600, y=10-, AM=94 wt%, 0 bar calendaring

Calendaring = lower porosity = more CBD connectivity = higher conductivity and tortuosity
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14 | Coupled electrochemical-mechanical half-cell discharge simulations

Current collector: I(t) Electrolyte:
* Species — Li" transport

* Nernst-Planck fluxes

* Electroneutrality for PF,
* (Current conservation

Particle Interface:
e Butler-Volmer reaction

*  OCV from Smekens (2015)

Particles:

* Species — Li tt
* Chemica
e Stress pc

* FElectrical — O

* Mechanics - F
* Li-induce

Conductive binder:
* Species — Porous Li" transport
* FElectrical
* Solid: Porous Ohm’s law
* Strain-dependent
electrical conductivity

* Liquid: Ionic conservation
& electroneutrality
e  Mechanics — Elastic

X Separator: V, =0

Mathematical formulation builds off of Mendoza (2016) LCO studies

Predictions of discharge curves, effects of mechanics, rate effects, and spatial variations in performance
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15 | Demonstration of NMC half-cell discharge simulation at C/2
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Coupled electrochemical-mechanical simulation yields detailed insight, predicts electrode-scale response
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16 I Summary

We have developed a unique image-to-mesh capability to enable rapid analysis of as-manufactured parts
We can augment imaging with physics-based mesostructure generation

We have applied this technique to lithium-ion battery cathode mesostructures and have:
° Created and characterized the impact of conductive binder morphology

° Calculated and correlated effective properties
> Predicted coupled electrochemical-mechanicals effects during charge/discharge

Publications available upon request
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Funding
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Mesoscale modeling is a powerful tool for predicting electrode behavior under extreme environments

3/12/2019 UNCLASSIFIED - DRAFT




Questions?
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Thermal/Fluid Component Sciences Department
Sandia National Laboratories, Albuquerque, NM
http://www.sandia.gov/~sarober/
sarober@sandia.gov

3/12/2019 UNCLASSIFIED - DRAFT



