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2 Motivation

Manufacturing
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Coupled electrochemical-mechanical effects at mesoscale connect battery manufacturing and performance
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3 I Outline

Computational representation of

imaged electrode mesostructures

NMC cathode effective property

prediction and upscaling
3/12/2019

Representation and role of

conductive binder morphology

Electrochemical-mechanical

discharge slips pf N cbalf-cells
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Discrete element method

mesostructure generation

Future directions in electrode

mesoscale modeling



4 1 Mesoscale geometry from CT data using CDFEM

3D Image Data

ri (X-ray CT)

Detailed 3D reconstruction and image essing necessary to get usable mesostruct a
3/12/2019 UNCLASSIFIED - DRAFT Roberts et al JES 2014, Roberts et al JEECS 2016



5 I What about the conductive binder?

Resolving conductive binder in 3D imaging difficult
Binder often neglected, assuming non-active void space
is electrolyte

0 Limited imaging results can hint at binder location

Amorphous binder is significantly nanoporous

47% Zielke (2015); 45% Grillet (2016)

5% ionic conductivity of pure electrolyte

Graphite; Jaiser et al. (2017) LCO; Komini Babu et al (2015)
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MI How are electrode-scale properties affected by the inclusion of binder? How does the morphology matter?
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6 1 Binder bridge morphology approaches

Level-set methods
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Two level-set morphologies visually bracket the range of stochastic morphologies
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7 I Why does the morphology matter?
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8 I Effective electrode property calculations

Calculate effective transport properties for upscaling
o Particle specific surface area

O Electrical conductivity

o Tortuosity

NMC image data from Kbner (2013)
O 90, 92, 94, 96 wt% NMC (remainder 1:1 CB:PVDF)

O 0, 300, 600 & 2000 bar calendering

O 100Ium x 100 larn x 60 lam domain (20 realizations eac

O Binder bridge (porous) morphology approach
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Effective properties are an important first step for upscaling mesoscale data
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9 I Porous binder and morphology considerations

Particle-Electrolyte Surface Area
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Limiting cases of both morphology methods show similar (but not identical) behavior; nanoporosity is important!
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10 I Effective electrode property calculation results —Transport
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I11 Discrete Element Method (DEM) mesostructure
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boundary

uniaxial compression

• periodic boundary

compression
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94% AM electrode
• —1k AM particles (10
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Uniaxial compression with granular and Brownian forces enable study of AM consolidation and CBD aggregation
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12 1 CDFEM mesh of DEM-generated mesostructures
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13 I Comparison of image- and DEM-based mesostructures
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14 Coupled electrochemical-mechanical half-cell discharge simulations

Particle Interface:
• Butler-Volmer reaction

• OCV from Smekens (2015)

Particles:

• Species — Li ti

• Chemica

• Stress pc

• Electrical — O

• Mechanics - F
• Li-induc(

Current collector: I(t)

Separator: V1 = 0

Mathematical formulation builds off of Mendoza (2016) LCO studies

•

Electrolyte:
• Species — Li' transport

• Nernst-Planck fluxes

• Electroneutrality for PF6-
• Current conservation

Conductive binder:

• Species — Porous Li+ transport

• Electrical

• Solid: Porous Ohm's law

• Strain-dependent

electrical conductivity
• Liquid: Ionic conservation

& electroneutrality

• Mechanics — Elastic

Predictions of discharge curves, effects of mechanics, rate effects, and spatial variations in performance
3/12/2019 UNCLASSIFIED - DRAFT Ferraro, in preparation



15 Demonstration of NMC half-cell discharge simulation at C/2
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16 Summary

We have developed a unique image-to-mesh capability to enable rapid analysis of as-manufactured parts

We can augment imaging with physics-based mesostructure generation

We have applied this technique to lithium-ion battery cathode mesostructures and have:
o Created and characterized the impact of conductive binder morphology

o Calculated and correlated effective properties

Predicted coupled electrochemical-mechanicals effects during charge/discharge
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Mesoscale modeling is a powerful tool for predicting electrode behavior under extreme environments
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