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ABSTRACT

The cloud has been leveraged for many applications across different
industries. Despite its popularity, the cloud technologies are still
immature. The security implications of cloud computing also domi-
nate the research space. Many confidentiality- and integrity-based
(C-I) security controls concerning data-at-rest and data-in-transit
are focused on encryption. In the world where social-media plat-
forms transparently gather data about user behaviors and user
interests , the need for user privacy and data protection is of the
utmost importance. However, how can a user know that his data
is safe, that her data is secure, that his data's integrity is upheld;
to be confident that her communications only reach the intended
recipients? We propose: they cant. Many threats have been hypoth-
esized in the shared-service arena, with many solutions formulated
to avert those threats; however, we illustrate that many technolo-
gies and standards supporting C-I controls may be ineffective, not
just against the adversarial actors, but also against trusted entities.
Service providers and malicious insiders can intercept and decrypt
network- and host-based data without any guest or user knowledge.
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1 INTRODUCTION

Numerous government and industry entities are initiating the move
to cloud [6] [20]. In these moves, customers must adopt a shared-
security responsibility model [29] with Cloud Service Providers
(CSP). The shared security responsibility model is an agreement
between the customer and the CSP that each has security respon-
sibilities that they must independently perform, typically with no
overlap in security functions. Thus, the customer must place signif-
icant trust in the CSP and its ability to protect their data. The CSP
is expected to implement appropriate measures designed to secure
customer content against accidental or unlawful loss, access, or
disclosure in its cloud infrastructure, implementing security mea-
sures for system layers and applications for which it is responsible.
Likewise, the customer is responsible for implementing appropriate
measures to protect its data for the system layers and functions
for which it is responsible. The separation in the system layers
for which the CSP is responsible versus where the customer is
responsible is distinguished by the type of cloud service provided.

For services such as Software as A Service (SaaS) or Platform as
a Service (PaaS), the CSP will have either access to unencrypted
data or the keys that are used to encrypt the data [15]. In the case
of data storage, the CSP may require an encrypted link between the

customer and the cloud; for this protection, the CSP has knowledge
of the key or certificate used to encrypt the data. For example, when
data is stored in Amazon Web Service (AWS) S3 buckets, the cus-
tomer may encrypt the data using customer-controlled encryption
keys. However, AWS requires the customer to share the encryption
key with them, which is in turn used to generate a hash-based
authentication code (HMAC) for verification purposes [3]. In this
example, AWS states they destroy the encryption key material [3]
after the data has been stored (when using customer server-side
encryption). Thus, the customer must place significant trust in the
CSP, both in the CSP honoring their claims and the effectiveness
of CSP security processes. The customer acknowledges this trust
model with the CSP and accepts the additional risk.

According to the National Institute of Standards and Tecnology
(NIST), security controls for confidentially and integrity regarding
data-at-rest and data-in-transit are based on encryption [28]. The
principle being, to protect the data (its confidently and integrity),
encrypt the data and ensure only those who are authorized can
access this information. System layers in cloud are afforded en-
cryption and authentication mechanisms controlled and managed
by the CSP, particularly for SaaS and PaaS. However, many CSPs
also have Infrastructure as A Service (IaaS) offerings which provide
opportunity for the customer to have full control of data encryp-
tion mechanisms. In IaaS, the customer can choose to generate
their own key pairs using industry-standard tools like OpenSSL.
Here, the customer generates the key pair in their own secure and
trusted environment. The customer then provides only the public
portion of the key pair to an IaaS instance located in the cloud.
Data can then be moved securely between the customer's trusted
environment and the IaaS instance running customer-configured
security software. In the case of IaaS, the plaintext data residing
on the cloud instance is securely located in cloud virtual machine
processes. The CSP should have no method to access the data in
the customer-configured and -instrumented IaaS instance. But does
the CSP have access to the guest operating system? Can the CSP
access either plaintext data in the guest operating system (OS), or
the encryption keys in the guest OS? If the CSP has undetectable
access to the IaaS instance, then the cloud customer cannot expect
privacy even in the case of IaaS.
The authors of this research paper have developed Virtual Ma-

chine Inspection (VMI) capabilities for advanced computer security
purposes [2]. These same VMI capabilities could be used by a CSP
to instrument its IaaS instances. If the VIVII capability is used in
the CSP cloud offering, the customer should recognize that such
technology may enable a CSP or malicious insider access the plain-
text of their encrypted data. Furthermore, CSP access to the data
may be completely undetectable by the cloud customer using IaaS
services.

The contributions of this paper to the community are as follows:
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• The authors will describe how network and disk encryption
in the cloud may not be sufficient to protect the confiden-
tiality and integrity of user data

• The authors will describe a hypervisor agnostic mechanism
to transparently access information, in a real-time fash-
ion without the tenant's knowledge and with negligible
performance impact to the tenant

• The authors will describe several mitigations that should
be sought after to increase privacy

The remainder of this paper starts with a technical description of
the VMI technology and its uses. Next, a section describing specific
applications that are commonly used in CSP IaaS deployments and
how VMI can be used by the CSP to eavesdrop on encrypted data.
This section discusses key extractions and undetectable deploy-
ments by the CSP. This is followed by an experimental analysis
executed to show, with statistical strength, that eavesdropping
through VMI is practically undetectable from the guest. Finally,
the authors conclude with suggestions for mitigating the risk of
unwarranted decryption of customer data.

2 BACKGROUND

The National Institute for Standards and Technology (NIST) defines
cloud computing as "a model for enabling ubiquitous, convenient,
on demand network access to a shared pool of configurable com-
puting resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction" [30].

Several CSPs have emerged as industry leaders as cloud comput-
ing has become increasingly mature and available. Amazon, Google
and Microsoft have demonstrated support through the promotion,
encouragement, adoption, and leadership of cloud computing, build-
ing a foundation for recent paradigm shifts. The paradigm will
continue to evolve as the cloud becomes more pervasive.
The promise of cloud computing has spurred entrepreneurial

development of cloud services. The services provided by these
businesses are generally divided into three categories:

• Software as a Service (SaaS)
• Platform as a Service (PaaS)
• Infrastructure as a Service (IaaS)

With both SaaS and PaaS, CSPs often have tight control of the
execution environments, as the applications that users access are
limited in the number of configurable options. The focus of this
paper is on the infrastructure component, IaaS. There are several
IaaS platforms (e.g., OpenStack, OpenShift, AWS, Microsoft Azure)
as well as providers in both private and public settings. IaaS pro-
vides users with the most freedom of configuration for their virtual
environments, comparable to what they would have in their own
enterprises. However, just as in traditional networks, IaaS is not
immune to malicious actors that take advantage of poor security
policies, weak credentialing, and multi-tenancy, let alone the mali-
cious insider who walks by equipment racks daily. Still, companies
and government sectors have made it part of their long-term strate-
gic plans to employ cloud technologies for their infrastructures
[16].
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In this sense, cloud has been leveraged for many applications
by many different industries. Despite its popularity, the develop-
ment and impact of cloud technologies are still immature and are
thus open areas for research and development [24] [1]. The security
implications of cloud computing are a rich topic that also domi-
nates the research space. From a forensic perspective, numerous
questions arise on how to analyze cloud resources using traditional
digital forensics techniques [37] [38]. For instance, during a tradi-
tional digital forensic examination, all files on the storage media are
examined along with the entire filesystem structure. However, this
is not a practical model for cloud infrastructure, as the elasticity
and ephemerality of pooled storage make pinpointing data blocks
cumbersome. This difficulty is exacerbated in networked systems
by the scale with which computing resources are spread over di-
verse administrative and geopolitical domains. Cloud computing
can combine numerous heterogeneous resources (hardware plat-
forms, storage back ends, filesystems) that may be geographically
distributed. The idiosyncrasies in cloud environments have caused
a paradigm shift in digital forensics; however, tools and techniques
still do not exist to help forensic practitioners cope with these is-
sues. And while many research areas enumerate these challenges,
open literature has not made significant headway to address the
issues or provide solutions.
The set of security and privacy objectives of an organization,

therefore, is a key factor for decisions about outsourcing infor-
mation technology services, and for decisions about transitioning
organizational resources to a public cloud and a specific provider's
services and service arrangements. What works for one organiza-
tion may not necessarily work for another. In addition, practical
considerations apply - most organizations cannot afford financially
to protect all computational resources and assets at the highest
degree possible and must prioritize available options based on cost
as well as criticality and sensitivity. When considering the poten-
tial benefits of public cloud computing, it is important to keep the
organizational security and privacy objectives in mind and to act
accordingly. Ultimately, a decision on cloud computing rests on a
risk analysis of the trade-offs involved. Much of the risk analysis on
data security and privacy centers around the notion of encryption.
The NIST states that 'Data must be secured while at rest, in transit,
and in use, and access to the data must be controlled. Standards for
communications protocols and public key certificates allow data
transfers to be protected using cryptography?' [16]

The adoption of cloud varies significantly between organizations
for numerous reason ranging from the purpose, legal obligations,
exposure to the public, threats faced, and tolerance to risk. From a
risk perspective, determining what cloud services an organization
can adopt is not possible without understanding the sensitively
of the data that is being moved and the threats that the organiza-
tion is facing. Further complicating this issue is that the risk and
threats are becoming more prevalent and aggressive. In the last
year, attacks such as Spectre and Meltdown have elucidated key
issues in how hardware-based attacks can significantly reduce the
trust in co-used hardware (such those used in IaaS platforms) [31].
Meltdown and Spectre affects personal computers, mobile devices,
and cloud; depending on the CSP's infrastructure, it may even be
possible to steal data from other customers. Three years ago, many
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thought that information once stored in RAM, would stay in RAM
was physically defective. Or (if one were a DRAIVI manufacturer),
that it could change sometimes, but this was simply a reliability an-
noyance. The Rowhammer work [12] [27] demonstrated that DRAM
disturbances could allow root access on a fully updated OS without
exploiting any software vulnerabilities, i.e., just flipping enough
bits to get write access to users page tables. That "couldn'r happen
- until it did. In the face of Spectre and Meltdown, most believed
that an unprivileged user-land process could not read out all of
system physical memory without any indication as to what it was
doing. Today? Not so much. The realization is that operating sys-
tems rely on hardware keeping the guarantees the architecture
promises, such as memory isolation (that one process cannot read
the memory of another process). When the hardware doesn't keep
those guarantees, nothing else can build a secure platform on top of
it. Despite all sorts of reasoning about process isolation and virtual
memory, over the past decade change has brought global read ac-
cess to everything if asked for properly. However, even with these
attacks, the mindset is that we still trust CSPs to protect our private
data.

Cloud computing is an outgrowth of the advances in virtual-
ization technologies. Through virtualization, a layer of opacity is
injected between the perspective of the user on the guest, and the
perspective from the hypervisor - often called the symantic gap.
VMI development is a fundamental technology associated with
computer virtualization, meant to bridge that symantic gap. Thus,
the applicability of VMI to cloud computing services is a straight-
forward application. The remainder of the paper continues with
descriptions of key aspects of VMI and how they tie into the cloud
computing paradigm, and how they can reduce or eliminate cloud
user privacy. As cloud computing, and specifically IaaS, become
more ubiquitous, it becomes more imperative to address the risks
that follow.

3 THWARTING ENCRYPTION AT-REST AND

IN-MOTION

Privacy and confidentiality in the cloud environment are based on
the user's trust of the CSP. With respect to IaaS, the user may have
more confidence with their trust since they own a greater portion
of the confidentiality piece: encryption. However, the authors argue
that through introspection from the host machine, that trust may
be all for not.

3.1 Virtual Machine Introspection

Virtual Machine Introspection, a term coined by [11] in 2003, was
originally meant to provide an architecture to support an intrusion
detection systems (IDS) based on the premise that a network-based
IDS would be more resistant to attack but would have a dimin-
ished view of what would be happening on the host. The authors
referred to it as a Virtual Machine Monitor (VMM) and built their
first prototype named Livewire. Nowadays the term has become
more general, wherein VMI is used to monitor low-level details
of a running virtual machine by viewing its memory, trapping on
hardware events, and accessing the vCPU registers [33].
The application of VMI has been used to augment network-

based security systems, enforce security policies on VMs, monitor
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VM performance, and study/identify cybersecurity matters such
as malware execution. Applications based on VMI methodology
include LibVMI [33], and its variants that include Volatility [9] or
Rekall [36] for advanced memory forensics. Various commercial
hypervisors have also seen the incorporation of VMI capabilities
throughout the years [34] [42] [7] [41] [35], toward the end of im-
proving cybersecurity and visibility for the events occurring on
virtual machines.

Other efforts in the research domain employ VMI for specific use-
cases, such as application whitelisting [14], page-level binary code
signing [22], heap allocation monitoring [17] [21], and interactive
system call redirection [10] [45]. The authors of [44] have devel-
oped CloudVMI, which provides inspection and manipulation of the
state of VMs, particularly in a cloud environment. Their solution
attempts to provide VMI as a service for cloud users but is based
heavily on Xen and LibVMI. The authors of [43] also target cloud
environments with their VMI product. Their solution attempts to
overcome intrusiveness, latency and OS-dependence found in other
VMI applications. Their claim is a real-time, transparent VMI so-
lution that is event-driven and generates snapshots cooperatively
to reconstruct guest memory states. However, their most recent
prototype is tooled for the KVM/QEMU hypervisor and targets
only 32-bit Linux-based operating systems. The authors of [39] [40]
have used VMI for extracting encryption keys from the VMs to aid
IDS systems and identify malicious network traffic. Their approach
is based on walking memory structures associated with the guest
VM to locate encryption keys (such as RSA) through a Forensic
Virtual-Machine Framework (FVM). They describe a very detailed,
in-depth methodology to locate keys in VM memory snapshots;
however, their evaluation relied on a single OS and hypervisor,
subject to storage constraints. The authors of [4] describe their
product Goalkeeper as a VMI tool used to enforce cybersecurity
policy through application whitelisting, wherein the VMI tool ter-
minates policy violators using a customizable set of VMI-based
process termination techniques. Their VMI tool was developed for
the Xen hypervisor, but only supports Linux OS (due to source code
and debugging symbol availability).
The authors of this paper have also developed a VMI capability.

The novelty of their VMI tool is that is deployable against various
hypervisors and guest operating systems, with the same attributes
of transparency to the guest user. Rather than integrate with the
code base of a hypervisor, and/or rely on open-source code/symbols
for VM operating systems - the VMI tool is implemented as a shim
process that augments unmodified hypervisor code. Further, on
the topic of kernel symbols and operating system idiosyncrasies,
it dynamically identifies attributes (symbols) of various operating
systems on-the-fly through analyzing memory structures upon
first encountering the VM. So, while many of the aims of VMI
in research have been to aid the cybersecurity practitioner, it is
authors' observation that it may be the case that security is not
what VMI need be ultimately used for. The flexibility of VMI, and
its goal of being transparent to guest processes, should sound the
alarm for clients of CSPs.
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3.2 Understanding VMI

There are many different methodologies in place to perform VMI.
The authors of [13] describe four categories for VMI:

(1) In-VM: monitors the guest OS from inside the VM and
exposes its activities to the hypervisor (who in turn enables
enforcement of policy).

(2) Out-of-VM Delivered: passive VMI, uses "delivered" seman-
tic information from the guest via explicitly incorporating
data in the VMI system, extracted from OS source code, or
obtained through kernel symbols.
Out-of-VM Derived: uses hardware provided functions to
observer/gather guest events and states, by either handling
traps (caused natively by the guest OS), or by forcing traps
using hardware-based hooks.

(4) Hybrid Techniques: use a combination of any of the three
methods above.

The VMI approach described herein is largely based on the third
category, Out-of-VM Derived. By inserting a hook anywhere within
the handling of a VM-Exit by a hypervisor, the VMI tool can gain
execution in Virtual Machine eXtentions (VMX) mode, and thus
control execution state and read memory of the currently exited
VM. These two primitives are enough to gain access to any data
processed by that VM. Some actions only require memory read
abilities, while others require an ability to modify state to cause
VM-Exits in circumstances where they would not have otherwise
happened.
Some hypervisors are not protected from malicious code inser-

tion into their execution path, nor from the preemption of their
VM-Exit handler. Even those that are segmented from the rest of
the system offer APIs that allow for some access to the hypervisor's
capabilities to less-privileged code.

Simply having the ability to read guest memory provides some
capabilities to extract information from the guest. To read key
material from a Firefox session, it is necessary to parse PE files,
identify processes, and modify execution flow by changing the
GUEST_RIP field of the Virtual Machine Control Structure (VMCS).
However, to obtain keying material from a security policy system
(such as Window's Local Security Authority Subsystem Service
(LSASS)), a naïve memory-reading algorithm that has full access to
host memory, but knows nothing about virtualization, is sufficient.
It would likely produce false positives, but since each session key
also comes with an identifier to match the correct stream, this turns
out to be a non-issue. The overhead of scanning a11 guest memory
would also be much higher, and since there are no cases yet where
the VMI tool does not have access to data from the hypervisor
context, the authors chose the lightweight route for an LSASS proof
of concept.

(3)

3.3 By-passing Encryption through
Hypervis or- as siste d VMI

By creating some basic VMI and debug-like capabilities, any hy-
pervisor can be used to bypass encryption. This is a fundamental
ability since the hypervisor has direct visibility and control over
guest execution. For example, any VMI capabilities that include
the ability to set breakpoints or log system calls is easily used to
bypass typical file encryption by simply gathering input/output
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(10) buffers before they are passed from user space to the kernel
(before hitting the encryption layer).

The problem extends far beyond simple dumping of unencrypted
buffers. To better illustrate this, the authors' VMI implemented a
handful of basic abilities in several hypervisors for both Windows
and Linux guest introspection. An API was created to set break-
points, parse binaries, enumerate process information, and hook
any or a11 system calls. This was done without utilizing any APIs
provided by the hypervisors (as the provided APIs were limited
both in speed and capability). By implementing custom interfaces
and introspection code that attached to the hypervisors, the VMI
tool gains capabilities that were otherwise not offered by the hy-
pervisor authors. This set of capabilities allows the VMI user to do
interesting tasks (like those of passive introspection), but also pro-
vides the ability to change guest state or execution - including full
control over hardware-defined control structures like the VMCS.

Given these VMI capabilities, several examples of monitoring
a guest VM to gather data that would otherwise be encrypted or
unavailable outside the VM are presented.

First, extracting SSL session keys in real-time from a web browser.
In this example, the VMI identifies a web browser process starting,
then enumerates its loaded DLLs, finds addresses of imported/exported
functions, and sets extended page table (EPT)-based breakpoints in
several strategic places. The VMI application also changes execu-
tion by modifying the VMCS and redirecting the guest instruction
pointer to a function which would not otherwise be used.

Next, the authors discuss how through memory scanning alone,
the VMI tool can enumerate all session keys used by client and
server applications utilizing Microsoft's Cryptography API: Next
Generation (CNG), and how this may be improved by VMI.

Finally, the discussion delves into the ability to intercept system
calls, through which the VMI tool can gather data being read from
or written to encrypted volumes such as VeraCrypt (and others) on
both Windows and Linux.

It is also worth noting that these are done in a hardware virtual-
ized environment in real-time, rather than with emulation.

3.4 Extracting TLS Session Keys from a
Browser

There are likely many ways to accomplish this task; the authors
present a method that requires little understanding of the Firefox
code, and without the need to re-implement any cryptography
code. This is meant to illustrate the ease with which a hypervisor
can extract data from a running system without its cooperation or
knowledge. The hypervisor can be made to cause the guest VM to
execute code that it would not otherwise execute and do so without
introducing any easily noticeable artifacts.

Firefox contains an optional feature that allows SSL session keys
to be extracted in real-time. This feature is not enabled by default
and may even be compiled out. A quick look through the Firefox
source code shows a function named PK11_Ext ractKeyvalue is
used by this feature. It takes a single argument which is a pointer to
a PK11SymKey structure. This function decodes a key value which
is later dumped to the log file. As it turns out, this code path is
not enabled by default, and is never run unless the SSLKEYLOGFI LE
environment variable is set to a valid value upon Firefox startup.
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Next, the identification of keys of interest is carried out so they
may be passed to PK11_ExtractKeyValue. Two more functions
are also leveraged: PK11_PubwrapsymKey and PK11_F reesymKey.
Setting a breakpoint on PK11_PublIrapsymKey allows the VMI tool
to numerate addresses of any PK11SymKey structures that repre-
sent a symmetric key. Finally, by also placing a breakpoint on
PK11_F reesymKey and looking for references to known symmetric
keys, the VMI user may be notified when Firefox is finished using
those keys.

After setting these two breakpoints in a callback for the PK11_
F reesymKey breakpoint, an emulated a call to PK11_Ext ractKey
Value is executed by pushing the current instruction pointer value
onto the guest VM stack and writing the address of PK11_Ext ract
KeyValue to the GUEST_RIP field of the VMCS. This, in effect, per-
forms a call to PK11_ExtractKeyValue on the PK11SymKey that
were just about to be freed, and then returns to PK11_FreesymKey
to immediately free the key, where a break is affected againakrbut
this time, the VMI tool gathers the decoded value from the structure
before letting it continue into the PK11_FreesymKey function. After
some simple formatting, the data is identical to what would appear
in the NSS log, all without enabling the feature in the guest VM
[26] . As mentioned, this is all done in real-time on a live system
with no notification to the user that this is happening.

3.5 Extracting Keys through LSASS

On a modern Windows platform, most applications that wish to use
built-in cryptography functionality will use the Cryptography API:
Next Generation (CNG). Some of the most common applications
include Edge, Internet Explorer, and Remote Desktop Services. CNG
is used by server applications as well.

In [18], techniques are presented for gathering session keys used
by client and server processes that utilize CNG. This was origi-
nally done using Volatility [9] or Rekall [36] (though to the authors'
knowledge the source was never publicly released). The basic abili-
ties needed to gather session keys require almost no bridging of the
semantic gap, though doing so drastically improves performance.
The authors' adapted the techniques to work from the context of
a hypervisor and used knowledge of the EPROCESS structure in
Windows to link the name lsass.exe to the directory table base (a.k.a.
the page table base or CR3) of the LSASS process (the Local Security
Authority Subsystem Service). As described in [18], this process
acts as a repository for all session keys. By isolating the guest's
page tables and with access to the Extended Page Tables (EPT) from
the hypervisor side, the VMI tool can enumerate the ring3-available
memory in the LSASS process and walk EPT to determine the host
addresses that correspond. This leaves a small subset of the overall
guest memory to search through, and by searching for the neces-
sary markers, a poll can be made against this set of memory from
outside the guest to recover all session keys stored in LSASS. The
process required to locate these keys is to find sets of three linked
structures, two of which have a 4-byte magic value, and the other
a C++ object which has one of two fixed virtual function tables
located at the beginning.

This code is implemented to run in a hypervisor context that
periodically scans guest memory for any new copies of the struc-
tures that may have been created since the previous run. Since
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it is system context, the search is limited to memory inside the
ring-3 portion of LSASS (where periodic re-enumerate of the range
is done). Actions also include attempts to pre-determine the two
harder-to-locate virtual function table pointers, since they do not
change throughout a single boot of each Windows system. Finally,
another thread can poll the current memory set at an arbitrarily
chosen interval to search for the objects that contain the session
keys. All key material is then dumped to a file on the host which
can be parsed by tools like RDP-Replay, Wireshark, or the inline
decryption chain described below.

3.6 Passing Keys for Decryption In-Motion

The following approach carries on from the key extraction methods
above, and results in the live decryption of traffic generated within
an IaaS cloud environment. The decryption of network traffic has
often been seen in two contexts: (1) in a malicious manner, where
an actor may attempt to employ man-in-the-middle (MITM) attacks
to gain information or payload data [32]; and (2) in an enterprise
network, where system administrators leverage bump-in-the-wire
technology to decrypt network traffic for payload inspection, then
re-encrypt upon egress [8]. Both methods involve direct interaction
and modification of the network stream to effect decryption and sub-
sequent re-encryption. The approach described here avoids these
methods by directly mirroring the encrypted traffic stream, causing
no disruption to the flow of traffic. Furthermore, through VMI, the
necessary key material to decrypt those streams out-of-band is
extracted in real-time. Figure 1 displays the general architecture
and workflow used to implement this model.
As an example, a user is logged into their cloud IaaS instance

and visits a HTTPS enabled website through their browser, as show
in Figure 1. Traffic from that session is ushered through the cloud
infrastructure network and then output to the Internet (through
a virtual switch, OVS). At step (1) the VMI application identifies
the establishment of an encrypted web session, and subsequently
begins extraction and storage of the key material (2). Thus, the CSP
has obtained possession of the user's private keying material and
can then access its network (4) for the encrypted data stream and
use the key material from (1) to decrypt the stream (3). The keying
material is then applied to the traffic which may be reassembled
as an unencrypted HTTP stream. The unencrypted stream is then
output and made available to the CSP to be stored as cleartext;
simple tools may be also be applied to streams for the reconstruction
binaries as well (5).

3.6.1 Implementation Details. The following describes an ar-
chitecture and process for decrypting traffic on-the-fly that may
be used at a hosting entity. The process of decryption begins with
a priori knowledge of the VM targeted, and the IP address of the
network interface on that VM. Each VM in the environment is
identified by a unique PID, as assigned by the hypervisor and host
operating system. The VMI outputs specific data streams, written
to files on the host machine; the output for keys is instantiated and
filtered by the VM PID (host_pid) and written to a unique file for
storage. Example key entries are shown below:

1493913648497720217, host_pid=aea, vpid=0,key=RSA ae673
37de13a127b 03038c66e9c5a43623812e467bf7ad8113058e9a06
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Figure 1: Live Decryption Workflow

cicea8b91a1cf50d62c2e7fa0d5c8955a14a9f4be03173d60d8473

1493913648695743196,host_pid=aea,vpid=0,key=RSA 59293
553b4f9cae3 0303e8d4d386387fc7e290786f8d945d161f4b7df9
b6bdbff77fb7b85d1eb482a71124292ac9ec1788776cf9b4635ab1

1493913648854945716,host_pid=aea,vpid=0,key=RSA 1534e
4d05b402d00 030304448941bbfc02fa8c33534f5d4fd32027707d
275bcef046ec36c80261a9f45e552dbc6b1ca5bf80d7aa57a0f69d

1493913649118681514,host_pid=aea,vpid=0,key=RSA 7aa94
450da746006 030367a8cf1758e3738ea25780fc09681d6cc12c97
e66b1c5f3aeb6b7d11c6d827f5a5e75cc01496a31d1c27a0174a22

1493913649405792039,host_pid=aea,vpid=0,key=RSA a67b9
d42e379d850 0303d77d349114386f8e863ed0cf57fcb9d0bc6cd0
d68568f1521b6934d84fcfe869698a8649608aa18cafdd4e39646f

The output data consists of the epoch timestamp, the host_pid
identifier for the VM, the virtual PID (virtual CPU) identifier and,
finally, the key data. The key data consists of the crypto standard,
an 8-byte value followed by a 48-byte value, the "pre-master secret."
The first smaller value is the first 8 bytes of the larger value as it is
seen encrypted over the wire. This format is prescribed by NSS [23]
to expedite the match to the proper key exchange; that is, matching
up the first 8 bytes of the RSA encrypted premaster secret in the
client key exchange packet will identify the key that decrypts with
the following 48-byte RSA key.

Concurrently, a command is sent to the switching fabric (e.g.,
Software Defined Network (SDN) controller) to initialize capture

6

of traffic to and from the VM. (Note: CSPs often deploy SDN tech-
nologies within the cloud infrastructure to perform flow-based
networking). In the CSP's infrastructure, the SDN controller begins
by creating two virtual interfaces on an the virtual host switch:
de lay_tap and decrypt_tap. A port mirror is established on the
VM's virtual interface to the delay_tap interface. A traffic control
(tc) profile is then applied to the delay_tap interface to delay the
flow of traffic by an arbitrary duration; this is done to provide ade-
quate time to consume and apply the key material to the stream.
The decryption function is then fed the delay_tap as the source
of traffic, the keying material storage location, and additional flags
to further filter the traffic (such as IP, ports, and traffic type, e.g.,
HTTP and SSL). Raw, unencrypted traffic (2) is then output to the
packetizer function to reconstruct the stream.

Decrypted SSL data (583 bytes):
0000 47 45 54 20 2f 63 6c 69 65 6e 74 5f 73 74 fif 72 GET /clientstor
0010 61 67 65 2f 61 31 32 35 33 37 35 35 3e 39 2e 68 age/a125375509.h
0020 74 6d 6c 20 48 54 54 58 2f 31 2e 31 Od 8a 48 6f tml HTTP/1.1..Ho
0030 73 74 3a 20 61 31 32 35 33 37 35 35 3e 39 2e 63 st: a125375509.c
0040 64 6e 2e 6f 78 74 69 fid 69 7a 65 6c 79 2e 63 6f dn.optimizely.co
0050 6d Od ea 55 73 65 72 2d 41 67 65 6e 74 3a 20 4d m..User-Agent: M
0060 6f 7a 69 6c 6c 61 2f 35 2e 30 20 28 57 69 6e 64 ozilla/5.0 (Wind
0070 6f 77 73 20 4e 54 28 36 2e 31 3b 20 57 69 6e 36 ows NT 6.1; Win6
0080 34 3b 20 78 36 34 3b 28 72 76 3a 35 33 2e 30 29 4; x64; rv:53.0)
0090 20 47 65 63 6b 6f 2f 32 38 31 30 30 31 30 31 20 Gecko/20100101
00a0 46 69 72 65 66 6f 78 2f 35 33 2e 30 Od 8a 41 63 Firefox/53.0..Ac
00b0 63 65 70 74 3a 2e 74 65 78 74 2f 68 74 6d 6c 2c cept: text/html,
00c0 61 70 70 6c 69 63 61 74 69 6f 6e 2f 78 68 74 6d application/xhtm
00d0 6c 2b 78 6d 6c 2c 61 78 78 fic 69 63 61 74 69 6f I.xml,applicatio
00e0 6e 2f 78 6d 6c 3b 71 3d 38 2e 39 2c 2a 2f 2a 3b n/xml;q=0.9,./*;
00f0 71 3d 30 2e 38 Od Oa 41 63 63 65 70 74 2d 4c 61 q=0.8..Accept-La
0100 6e 67 75 61 67 65 3a 20 65 fie 2d 55 53 2c 65 6e nguage: en-US,en
0110 3b 71 3d 30 2e 35 Od Oa 41 63 63 65 70 74 2d 45 ;q=0.5..Accept-E
0120 6e 63 6f 64 69 6e 67 3a 20 67 7a 69 70 2c 28 64 ncoding: gzip, d
0130 65 66 fic 61 74 65 2c 20 62 72 Od Oa 52 65 66 65 eflate, br..Refe
0140 72 65 72 3a 20 68 74 74 70 3a 2f 2f 77 77 77 2e rer: http://www.
0150 63 fie fie 2e 63 6f 6d 2f Od Oa 43 6f 6f 6b 69 65 cnn.com/..Cookie
0160 3a 20 63 64 6e 3d 68 74 74 70 25 33 61 25 32 66 : cdn=http%3A2f
0170 25 32 66 61 6b 61 6d 61 69 25 33 61 64 73 64 25 UfakamaiW3adsd%
0180 34 30 63 64 6e 2e 6f 70 74 69 6d 69 7a 65 6c 79 40cdn.optimizely
0190 2e 63 6f 6d 25 32 66 6a 73 25 32 66 31 33 31 37 .comk2fjs,(2f1317
01a0 38 38 38 35 33 2e 6a 73 Od 8a 43 6f 6e 6e 65 63 88053.js..Connec
01b0 74 69 6f 6e 3a 20 6b 65 65 70 2d 61 6c 69 76 65 tion: keep-alive
010 Od Oa 55 70 67 72 61 64 65 2d 49 6e 73 65 63 75 ..Upgrade-Insecu
OldO 72 65 2d 52 65 71 75 65 73 74 73 3a 20 31 8d Oa re-Requests: 1..
OleO 49 66 2d 4d 6f 64 69 66 69 65 64 2d 53 69 fie 63 If-Modified-Sinc
01f0 65 3a 20 54 75 65 2c 20 32 33 20 4d 61 79 20 32 e: Tue, 23 May 2
0200 30 31 37 20 38 30 3a 35 32 3a 32 38 20 47 4d 54 017 80:52:28 GMT
0210 Od Oa 49 66 2d 4e 6f fie 65 2d 4d 61 74 63 68 3a ..If-None-Match:
0220 20 22 37 63 38 65 38 62 38 39 37 64 37 39 39 31 "7c8e8b897d7991
0230 34 35 38 65 62 30 38 31 33 39 33 65 35 31 63 33 458eb881393e51c3
0240 31 66 22 Od Oa Od Oa

Figure 2: Raw Unencrypted Traffic

Each block of plaintext network traffic as output from the de-
cryption function are classified as either frame, reassembled TCP,
or decrypted SSL. A packetizer function consumes each of these
classified blocks to reconstruct entire TCP segments and streams,
maintaining all the application layer flag and option settings, whilst
updating the lower level attributes (such as CRC calculations). This
updated, plaintext session traffic is then output to the decrypt_tap.
The traffic leaving the decrypt_tap may be consumed by two

functions: (1) a packet capture function, can facilitate full recon-
struction of payload data as required, and (2) a deep packet in-
spection (DPI) function, which can summarize the attributes of
the traffic flow and extract relevant payload (layer-7) metadata as
required. The latter DPI function can output the data to a SIEM,
which provides correlation between other traffic in the network, or
to other host data in the cloud environment.
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3.7 Transparently Decrypting Filesystems

By simply monitoring sys_read on Linux or NtReadF i le on Win-
dows, the VMI tool can gather data out of file buffers on most types
of encrypted filesystems. This is because the encryption generally
takes place at a lower layer than that of the system call.
When encrypted files are at rest, their contents are not copied

into buffers and passed to system calls (where a VMI application
might try read out their contents). However, by modifying argu-
ments or redirecting guest execution, the system may be tricked
into reading a file it otherwise would not have touched. Thus, the
authors approach allows the VMI to read the contents of arbitrary
files on an encrypted volume at will.

3.8 Alternate Approaches

The examples shown above purposely modify execution flow in
the guest to illustrate the ease with which it can be used to produce
desired outcomes with guest data. However, numerous alternatives
exist. Though it would require more effort, it would also be possible
to passively gather encoded keys and decode them by writing cus-
tom extraction routines. Additionally, the VMI tool could weaken
the random number generator or other parts of the session key
generation routine, or perhaps find a way to gather session keys
when they are shared over network connections. In addition, it has
been shown that having full physical memory access to guest VMs
is enough alone to identify cryptographic keys in memory [23].

4 PERFORMANCE TESTING:
WHAT DOES TRANSPARENT MEAN?

A key questions is, "Can the cloud user detect if VMI is being used
by the CSP on a specific IaaS instance?" One hypothesis is that
VMI may impact VM or instance performance where the user can
recognize the performance impact. An experiment was designed to
show that a user could not identify VMI was being used on their
VM to extract key material and decryption traffic on-the-fly.

The design of the experiment is one based on factorial analysis.
Two experiments were run, each involving access to encrypted data
at-rest and in-motion. The experiments were run on hardware often
used by CSPs in their cloud offerings. Experiment orchestration
was performed with minimega [25].

4.1 Testing Parameters

The host servers used were Supermicro blade-servers running
Ubuntu Server 16.04 LTS with 256GB memory and 32-core Intel
Xeon E5-2650 processors. The virtualization manager used was
minimega [25], leveraging KVM as the hypervisor. The virtual web-
server was a nginx process run from a lightweight Linux virtual
machine (tiny core) with 16GB memory and four virtual CPUs. The
endpoints (clients) were Windows 10 x64 virtual machines running
Firefox 64-bit, each with 8GB memory and one virtual CPU.

4.1.1 Network Decryption Experiment. The network decryption
experiment consisted of two VMs running in a client-server con-
figuration. The client VM (Windows) web browser was automated
to visit the server VM (tiny core) to retrieve various files of differ-
ent size over a MS-encrypted channel. The host machine ran: (1)
without VMI, (2) with VMI, extracting keys from Firefox (F), (3)
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with VMI, extracting keys from LSASS (L). For VMI tests, the keys
were extracted then used to decrypt network traffic, as described
in Section 3.6 above. Trials were run over 30 iterations to meet a
normal distribution. The response variable (metric) was time in
milliseconds.
The factors and levels considered for the analysis of this experi-

ment can be seen in Table 1.

Table 1: Network Test Factors

Factor-1

{No VMI, FF Key Extraction, LSASS Key Extraction}

Factor-2 Factor-2 Levels
Payload size {1K, 500KB, 1MB}
Cipher suite {(*),(+)}

*TLS_ECDHE_ECDSA WITH_AES_128_GCM_SHA256
+TLS_ECDHE_ECDSA WITH_AES_256_CBC_SHA

4.1.2 Host Decryption Experiment. The host decryption experi-
ment consisted of a single VM (Windows). The experiment exercised
the VMI's capability to extract encrypted files written and read from
the OS's filesystem. Files were generated from randomized data,
then encrypted using Windows EFS. Writes were accomplished by
copying the file; reads were accomplished by concatenating the
file. Each test was run 30 times to meet a normal distribution. The
response variable (metric) was time in milliseconds.

The factors and levels considered for the analysis of this experi-
ment can be seen in Table 2.

Table 2: Host Test Factors

Factor-1

{No VMI, With VMI}

Factor-2 Factor-2 Levels
File Read {1MB, 10MB, 100MB}
File Write {1MB, 10MB, 100MB}

4.2 Results

The results of the two experiments are discussed in the following
sections.

4.2.1 Network Decryption Results. The Network Decryption
Experiment consisted of establishing a TLS-encrypted channel be-
tween two VMs: a client and server. The TLS-encrypted channel
was initialized by the client's web browser and used to download
files of three different sizes (1KB, 500KB, and 1MB). Two cipher-
suites were used for the TLS connection, as commonly used for TLS
v1.2 (*) and MS v1.1 (+). Introspection factors included: no VMI,
VMI using Firefox key extraction method, and VMI using LSASS
key extraction method. The times to download the files, based on
combination the of factors is graphically represented in Figure 3.
Each trial was run 30 times.

In Figure 3, the x-axis represents the number of bytes transferred
(ffie size); the y-axis represents the average time to download. As can
be seen, the times for each factor combination are almost identical.
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Figure 3: Download Time per Factor

Actual values for these results are shown in Table 4. From factor to
factor, the means for times to download the files, and their standard
deviations, are very similar.

4.2.2 Host Decryption Results. Since there are only two con-
figurations to compare in this experiment (with VMI and without
VMI), the authors used a t-test to compare the data sets. Using the
lack of VMI as the population, the null hypothesis is that with VMI
enabled, the observational data shall not be significantly different
than without VMI. In accordance with the factorial design in the
section above, 30 trials were run with and without VMI, reading
and writing files of 1MB, 10MB, and 100MB. Results are shown in
Table 4 for file writes; file read results are shown in Table 5.

The samples collected from each of the tests were proved to
follow normal distributions using Q-in-Q plots; the F-test was then
run to determine equality of variance between the sets (e.g, no-VMI
1MB to with-VMI 1MB, etc.), using an a = 0.05. Equality of variance
was shown between all corresponding sets. The resultant t-test
p-values for each of the set-pairs were:

• Write 1MB: p = 0.914046758
• Write 10MB: p = 0.646450549
• Write 100MB: p = 0.308094339
• Read 1MB: p = 0.313688073
• Read 10MB: p = 0.317179742
• Read 100MB: p = 0.162026589

Considering all of the p-values being higher than a 0.05 signifi-
cance, we can accept the null hypothesis that there is no significant
difference between file reading and writing with or without VMI
running.

5 SUGGESTIONS FOR MITIGATION

The methodology and experiments herein show how a CSP can
transparently eavesdrop on a VM through the hypervisor and ex-
tract private information or data from a perceived secure cloud
environment. Although such a data privacy compromise may ap-
pear to be unavoidable, the authors have also researched ways to
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decrease the risk or mitigate the full impact. However, the mitiga-
tion approaches must be implemented by the CSP. No mitigation
approach is currently available that can be implemented solely by
the cloud customer.
AMD has recently introduced a new technology called Secure

Encrypted Virtualization (SEV) and SEV with Encrypted State (SEV-
ES)[19], which provide the ability to hide memory and (with SEV-
ES) most registers from the hypervisor, treating the hypervisor as
possibly malicious. SEV is somewhat easy to turn on, but SEV-ES
requires support from the virtualized OS.
The architecture of the hypervisor can also make things more

difficult for attackers. Take Microsoft's Hyper-V or Azure as an ex-
ample. In this architecture, the hypervisor is booted before the root
partition, which is essentially a VM where the managing operating
system resides. The root partition's view of system memory can be
managed by Hyper-V, which uses this vantage point to protect its
own code from view of the root partition. Even a malicious admin-
istrator would have a much more difficult time getting any code to
run in the context of the hypervisor with this architecture. The hy-
pervisor can utilize technologies such as Virtualization Technology
for Directed I/0 (VT-d) to prevent direct memory access (DMA), as
well as EPT to block normal access to its own memory. Without
these basic protections in place (for example with KVM and some
others), it is trivial to run a kernel module in the host operating sys-
tem which then locates the VM-Exit handler and hooks execution
(as the authors have shown). But with these protections available
and enabled, an attacker must exploit a vulnerability to gain access
to the execution path of the hypervisor.

In addition to making the hypervisor's memory unavailable to
at least typical access, it would also be useful if EPT and VT-d
were used to protect the memory assigned to each guest. As noted,
the LSASS attack should require nothing but direct access to host
memory. The only way to prevent this would be to segment off
memory from each guest. As to the authors' knowledge, this is
currently not done by default in any hypervisor, although Hyper-
V clearly has the ability as they have introduced Virtual Trust
Levels (VTLs), which do protect the memory of high VTL guests
from those with lower trust levels. This is currently used to run a
secure VM (secure kernel) with full access to a Hyper-V enlightened
Windows operating system and allow for it to perform PatchGuard-
like activities [5] from beyond the purview of that operating system.
It is reasonable to assume that this is also extendable to protect all
guests from the already-untrusted Windows partition.

6 CONCLUSIONS

In this paper, the authors have presented several inherent risks to
the protection of user data when hosted by IaaS-based platforms.
The paper described how network and disk encryption in the cloud
may not be sufficient to protect the confidentiality, integrity and
privacy of user data. The authors described and demonstrated that
a hypervisor agnostic monitoring tool can transparently access
information, in a real-time fashion without the tenant's knowledge
and with negligible performance impact to the tenant. Finally, the
discussion covered some mitigations that could be put into place
by the CSP to provide additional security to the users.
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