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Dense Granular Rheology e
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Laboratories

Fully Stress-Controlled Simulations i

initial dilute system shear arrest harmonic contacts

Coulomb microscopic friction

Q0 =i < .17

Macroscopic Observables:

volume fraction: ()

deformation rate (3D): L(t)

Parinello-Rahman dynamics

internal stress (3D): O'(t)
constant pressure + shear

steady flow
Srivastava et al., Phys. Rev. Lett., 122 (2019)



Rheology: Plane Shear Flows i
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Steady-State Rheology: Shear
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Steady-State Rheology: Co-axial Flow D .
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Steady-State Rheology: Co-directional Flow!? =N
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Conclusions & Outlook i
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* How about non-planar shear flows?
Triaxial compression/extension?
Nature of stress tensor in complex
loading scenarios?
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* Correlate evolution of internal fabric to
the normal stress difference for
micromechanical constitutive modeling
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