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ABSTRACT

In modern scientific analyses, physical experiments are often supplemented with computational modeling
and simulation. This is especially true in the nuclear power industry, where experiments are prohibitively
expensive, or impossible, due to their extreme scales, high temperatures, high pressures, and the presence
of radiation. To qualify these computational tools, it is necessary to perform software quality assurance,
verification, validation, and uncertainty quantification. As part of this broad process, the uncertainty of
empirically derived equations must be quantified. In this work, three commonly used thermal hydraulic
models are calibrated to extensive sets of experimental data. The empirical equations are used to
determine single phase friction factor in smooth tubes, single phase heat transfer coefficient for forced
convection, and the transfer of mass between two phases. Bayesian calibration methods are used to
estimate the posterior distribution of the parameters given the experimental data. In cases where it is
appropriate, mixed-effects hierarchical calibration methods are utilized. The analyses presented in this
work result in justified and reproducible joint parameter distributions which can be used in future
uncertainty analysis of nuclear thermal hydraulic codes. When using these joint distributions, uncertainty
in the output will be lower—and therefore more accurately represent the state of knowledge for these
phenomena—than traditional methods of determining parameter uncertainty.
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1. INTRODUCTION

In the classical scientific method, the reciprocity between explanatory hypotheses and physical
experiments was used to make conclusions. In recent decades, this paradigm has been enhanced through
the introduction of the modern computer. The new scientific process allows predictive computational
models to explore and analyze events at scales and with precision that was previously unattainable.
However, before physical experiments can be supplemented with computational simulation, the accuracy
of computer models must be established.

Rigorous evaluation of computer models has been outlined throughout the literature, for example in [1, 2].
These processes include software quality assurance, verification, validation, and uncertainty
quantification. This work focuses on calibration, which is a process related to uncertainty quantification
during the uncertainty in empirical models is addressed. In general, calibration is performed individually
on empirical models in the code to assess both parameter and experimental uncertainties.

In this work, two different statistical models are employed where appropriate. The first model is a fixed
effects analysis, which is very commonly employed [3]. In this case, all experimental data is governed by
a single law or physical model without variation between individual experiments. In some cases where
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individual experiment(s) exhibit deviations from the population, fixed effects models are insufficient. In
these cases, mixed-effects analyses are necessary. One example of mixed-effects analysis has consistently
been used to demonstrate mixed-effects tools in computational packages (e.g., R, Matlab, etc.) [4]. In this
example, the circumferences of five orange trees are measured over time. Though the trees are all
governed by the same growth pattern, they each have individual growth rates determined by sun
exposure, nutrition, disease, etc. Therefore, the circumference of all the trees are fit to a logistic growth
model and the mixed-effects model is used to account for variations between the individual trees.

Mixed-effects analysis is common in many fields, but it has only recently received attention for
engineering applications. For example, a mixed-effects model has been fit to experimental data for the
degradation of nuclear reactor pipes [5] and dating of crystals through the process known as fission track
dating [6]. In this work, these ideas are extended to common practical nuclear engineering problems. It is
our intent to introduce these methods to a wider audience and make them more accessible for general
applications.

The Bayesian calibration techniques employed in this work are introduced in Section 2. Example
applications are outlined in Section 3, which includes three common nuclear engineering models: friction
factor, heat transfer coefficient, and mass transfer coefficient between phases. The work concludes with a
discussion and outline of future work.

2. BAYESIAN CALIBRATION

Bayesian analysis assumes a joint prior parameter distribution, rr 0(0), which incorporates knowledge
previously known about the distribution. The goal of Bayesian calibration is to combine the information
provided by the prior with some new experimental data y. This is done by determining the posterior
distribution ir(0 ly), which uses the likelihood function L(y le) to incorporate information about both the
prior and experimental data. The posterior and prior functions are related through the likelihood function
through Bayes formula.

L(yle)Tro (6)
Th(Oly) = 

f (y10)7t 0(6) de
(1)

Combinations of parameters that are more likely to have generated the observed data are associated with
greater likelihood values. The direct solution of Bayes formula is either impossible or very
computationally intensive for most practical applications. Therefore, sampling methods are generally used
to approximate it [7]. This general class of methods, Markov Chain Monte Carlo (MCMC), construct a
sampling-based chain whose stationary distribution is the desired posterior. Bayesian calibration provides
a joint posterior distribution that is consistent with experimental data, justifiable, reproducible, and not
constrained to any predefined distribution.

2.1. Fixed Effects Analysis

In most cases, empirical models represent data which is governed by the same physical law or theory. In
such cases, the same parameter distributions describe the whole population. These types of analyses are
indicative offixed effects statistical models.

yn = f (xn,t9) + e (2)

Here, the n-th experimental data point yn is associated with the state variable(s) xn and f is the model to
be fit to the experimental data. The observational error E is generally assumed to be identically,



independently, and normally distributed with a mean of zero, E N (0, a') [3]. The model parameters 0
and observational error variance a are unknowns to be statistically inferred.

For fixed effects analyses, this work employs the Delayed Rejection Adaptive Metropolis (DRAM)
algorithm, which an MCMC method [8]. DRAM improves upon basic MCMC by updating the covariance
matrix throughout the simulation [9] and by allowing second stage candidates to be proposed [10]. Both
improvements increase the efficiency and robustness of the algorithm.

To accurately sample from the posterior distribution, the Bayesian chains must be converged. To achieve
a converged solution, the MCMC algorithm is run for an initial convergence period, or burn-in, which is
excluded from the final analysis. In this work, 106 burn-in samples are used, which is relatively large
compared to other analyses in the literature [3,11]. This large burn-in period is required because no effort
is made to provide the DRAM algorithm with accurate initial values of the parameter distribution or
observational error. The DRAM code used in this work was implemented by Marko Laine [12].

2.2. Mixed Effects Analysis

Some physical processes require mixed-effects analysis. This statistical model allows the population to be
governed by some physical model while individuals in the population exhibit variations. The mixed-
effects statistical model has random effects for each laboratory [11].

Ynl = f (xn, B + fl1) + e (3)

Here, the global effects B account for the overall behavior of the model whereas the random effects
account for variations between the 1 individuals. In this work, a hierarchical Metropolis-within-Gibbs
Bayesian framework is employed to estimate both the global and random effects. Gibbs sampling is an
MCMC method for sampling a posterior distribution that is either unknown or difficult to sample and is
therefore well-suited to the hierarchical framework [11]. With this method, the parameters are given prior
distributions 0 — N(90,E0), N(flo, W-1(11t 0, p0), and a2 InvGamma(vo,x0) [11]. Here,
W-1(kppo) indicates the inverted Wishart distribution with scale matrix 00 and degrees of freedom po.

For this work, the same implementation is used as the fixed effects analyses [12]. Mixed-effects models
converge slowly, and therefore 106 burn-in iterations are used. Prior distributions and starting values for
the chains are determined using the Matlab function nlme f i t.

3. APPLICATIONS

In this section, Bayesian calibration methods are applied to three empirical models used in MELCOR
[13]. These models are also common in other nuclear safety codes, such as the subchannel code COBRA-
TF [14] and the system code RELAP [15].

3.1. Single Phase Friction in Smooth Tubes

The analytical derivation of friction factor f requires that the velocity distribution within the pipe is
known. The is only practical for flows with low Reynolds numbers, where the fluid flows in parallel
layers without lateral mixing. Under this laminar flow condition, the friction factor can be analytically
calculated for incompressible Newtonian fluids in smooth tubes [16].
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(4)



For Reynolds numbers greater than about 2000, turbulence causes chaotic changes in the velocity field,
which makes analytical calculation of the friction factor impossible. Under these conditions, the friction
factor is determined empirically. For high Reynolds numbers, where turbulent flow exists, a variety of
equations exist for determining the friction factor. One of the most widely used is the McAdams relation
[17,18].

f = 0.005 + 0.5Re'.32 (5)

This equation is valid for 3 • 103 < Re < 3 • 106. In the turbulent regime, the friction factor is also a
function of pipe roughness; however, this dependence is not generally treated in nuclear safety codes. Due
to manufacturing processes, radiation damage to materials, and the buildup of corrosion materials on
reactor surfaces, it is nearly impossible to determine the effective roughness of a surface in a normal
operational reactor. This uncertainty is even larger in MELCOR, since the roughness of severe accident
materials (debris, core melt, etc.) are unknown. Therefore, surface roughness will not be considered in
this work.

Between laminar and turbulent flow, there exists a transition region. In this work, the transition region is
modeled as a combination of the laminar and turbulent relations.

Here, S is the logistic function

ftrans = (1 — S)ham + Sfturb

1
S = 1+ e-a(Re-b)

(6)

(7)

Where the two parameters a and b determine how quickly the transition happens and where it is centered.
The parameters have approximate values of 0.01 and 2500, respectively. In this section, the friction factor
is parameterized with two random effects and five global effects.

1 64 03 + O4Re-195
f = (1  

1 + e-(el+1611)(Re-(92+1621))) Re + 1 + e-(91+fi'll)(Re-(612+fl20) 
(8)

Here, the parameters that determine the transition regime are modeled using mixed-effects. The transition
to turbulence is strongly influence by laboratory-dependent factors such as entry geometry, development
length, and pump vibrations [19]. Recent studies have even suggested that the transition to turbulence
depends upon microscopic motions of molecules, meaning that the selected working fluid also plays a roll
[20]. Therefore, the laminar-turbulent transition is dependent upon the experimental facility and there are
biases that lend themselves to mixed-effects analyses.

Experimental data sources for the friction factor calibration are shown in Table I and Figure 1. Note that
the figure shows the transition and turbulent regimes separately, but the two models are continuous and
smooth. The data is restricted to friction factors below 0.05, since the laminar solution is analytical. Any
error in this region can therefore be attributed to model form, which is not related to the calibration
process. We also restrict the data to Re < 2 • 10^6, which is representative of nuclear reactor conditions
and is well within the range of applicability for the McAdams equation. In total, 453 data points from five
experiments are used for the calibration.

The mixed-effects Bayesian calibration is performed, and the resulting 95% prediction intervals are
shown in Figure 2. The intervals enclose the appropriate proportion of the experimental data and have



Table 1. Data sources for single phase pressure drop in smooth pipes

Year Author Pipe Fluid

1914 Stanton & Pannell [21] brass water, air
1932 Nikuradse [22, 23] brass water
1969 Patel & Head [24] brass air
2002 Swanson et al. [19] stainless steel gases, liquid He
2017 Everts & Meyer [25] copper water
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Figure 1. Experimental data for the friction factor calibration
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Figure 2. Calibration results for friction factor calibration

1 0
6

reasonable levels of uncertainty. Additionally, the variable behavior of the transition regime is
appropriately accounted for by the mixed-effect statistical model. The parameters in the turbulent regime
are all global, so there are no differences between the results for the different experiments. The calibration
results in an overestimation of uncertainty at high Reynolds numbers, since the friction factor at low
Reynolds numbers is much higher. To account for this, the observational error could be scaled with the
friction factor prediction at the corresponding Reynolds number [3].



3.2. Single Phase Forced Convection Heat Transfer

Heat transfer coefficients can be analytically derived in situations where the temperature and velocity
distributions are known. However, this is generally only possible for laminar flow conditions. For
transition and turbulent flow, the heat transfer coefficient must be determined empirically. For forced
convection flow through smooth tubes, the Dittus-Boelter equation [26], which is based on the
experimental data of Morris and Whitman [27], is generally used.

Nu = 0.023 Re°.8prO.4

The Dittus-Boelter equation is formed into a three-dimensional calibration model, where all three
parameters have both global and mixed effects.

Nu = (9i + flu) Re092024r(e3031)

Data from three different sources is gathered for the Dittus-Boelter calibration; they are listed
chronologically in Table II and shown in Figure 3.

Table II. Data sources for forced convection heat transfer coefficient

Year Author Pipe Fluid

1928 Morris & Whitman [27] steel water, oil
1931 Lawrence & Sherwood [28] copper water
1952 Deissler & Eian [29] Inconel alloy air
1963 Kays & Leung [30] Inconel alloy air

o Morris & Whitman [27]
o Lawrence & Sherwood [28] 
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Figure 3. Experimental data for heat transfer coefficient calibration
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The correlation is calibrated to the experimental data, yielding a three-dimensional mixed-effects result.
Plotting intervals for the full three dimensions is very difficult, so instead two-dimensional slices are
analyzed. Two slices are shown in Figure 2, where Pr = 0.7 and Pr = 3.0 are respectively representative
of air and water. The random effects in this analysis are larger in this analysis than in the friction factor
correlation, and therefore there are strong deviations of individual experiments from the global effects.



500

400

300

200

100

o Deissler & Eian [29]
o Kays & Leung [30]

-Global Effect

Pr = 0.7

10
4

105

Re Re
Figure 4. Calibration results for heat transfer coefficient
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3.3. Mass Transfer between phases

104

As part of the boiling and condensation models in nuclear safety codes, the mass transfer between phases
must be approximated. In addition, heat/mass transfer between other phases is treated using the same
model in MELCOR. This empirical relation takes a form similar to the Dittus-Boelter correlation.

Nu = 2.0 + CRe°.5Pr1/3 (11)

It is derived through analysis of flow over spheres, where the value 2.0 is analytically determined and the
remaining constants are semi-empirical. Values of C vary throughout the literature, but the most common
values, suggested respectively by Froessling [31] and Ranz & Marshal [32], are 0.55 and 0.6.

Data is gathered from four sources, which are listed chronologically in Table III. The data is plotted in
both two dimensions and three dimensions in Figure 5.

Table III. Data sources for interphase mass transfer relation

Year Author Fluid Sphere

1938 Froessling [31] air analine
1940 Powell [33] air water
1952 Ranz & Marshall [32] air benzene, water
1960 Yuge [34] air steel, brass

For the calibration, the analytically determined parameter is held constant. Though the value may have
model form uncertainty, we treat it as known for this analysis. The other three parameters are exposed,
with only the first two having random effects.

Nu = 2.0 + (01 + (311)Re(82-h62/)Pr°3 (12)

The calibration is performed, and the resulting 95% prediction intervals for Pr = 0.6 and Pr = 0.7 are
shown in Figure 6. The calibrated model agrees relatively well with the experimental data; however, the
Powell data set appears to have larger experimental uncertainty than the other data sets. As such, an
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Figure 5. Experimental data for interphase heat or mass transfer calibration
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Figure 6. Calibration results for interphase heat or mass transfer

observational error which is different for each laboratory might be appropriate.

yi = f (xi, 0 + 131) + E1

05

10
4

(13)

Such models are available in the literature and commonly used for such problems [3]; however, this
extension is not performed here. Accounting for the variation in experimental error would have little
effect on the global effects, which are the parameters of interest for propagation.

4. CONCLUSION

In this work, three empirical relations common to nuclear safety codes are calibrated to extensive sets of
basic experimental data. The Bayesian methods lead to a justifiable and reproducible joint distribution of
the parameters. The mixed-effects statistical model allows the calibration to account for biases between
experiments, which are attributed to both physical phenomena and to unknown biases between the



experimental facilities. The resulting joint distributions can be used predictively by either (1)
incorporating random parameters and analyzing additional experiments from the experimental facilities
used in the calibration, or (2) excluding random parameters and using the global results to predict
behavior in new facilities.

A few weaknesses of the currently employed Bayesian framework were exposed in this work. The two
primary problems deal with the definition of the observational error, s. The observational error is an
absolute value, and therefore is not suitable for the calibration of models which vary many orders of
magnitude. This was the case for both the Dittus-Boelter and the Froessling correlations. To fix this, the
observational error should be scaled with the quantity of interest. The observational error also seemed to
vary between different experiments, especially for the final calibration, where Powell's experiments had
large uncertainties. To account for this, the observational error can depend upon the experimental facility,
similar to the random effects.

In future work, similar methods should be extended to additional models in nuclear safety codes. With a
thorough knowledge of individual models in the code, integral assessment of the code becomes possible.
The analyses in this work can be incorporated into a hierarchical validation framework and used to
incrementally improve a computational tool.
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