This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Exceptiontzl service in the national interest

Laboratories

Communication-avoiding &
pipelined Krylov solvers in Trilinos

Ichitaro Yamazaki (UTK) & Mark Hoemmen (SNL)
SIAM CSE, 28 Feb 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned

_ - subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Outline) e,

= Communication-avoiding & pipelined Krylov solvers
= Like other Krylov methods, solve linear systems Ax=b iteratively
= Avoid (do less) or hide (overlap) communication

= Algorithms are (mostly) prior work, some our own

= We implemented these solvers in Trilinos

= Trilinos: Big C++ production math library
= Parallel: MPI + threads (e.g., OpenMP, CUDA)
= |’ll talk about 2 software engineering challenges today

= Deployed solvers in ECP ExaWind application
= ExaWind: Simulate multiple wind turbines & wakes in terrain

= See talk by our NREL collaborators in this minisymposium
= 1.5x faster on Cori Haswell; results soon on other architectures

What is Trilinos? ==

Parallel math libraries for science & engineering applications
= Sparse matrices & parallel distributions
= Linear solvers & preconditioners
= Nonlinear solvers, optimization, ...

~ 20 years’ continuous development
Mostly C++11, some C & Fortran

Supports many different platforms
= CPUs: x86, KNL, POWER, ARM, ...
= GPUs: NVIDIA, AMD in progress, ...

github.com/trilinos/Trilinos

Users inside & outside Sandia

Trilinos’ linear solvers) 2=

= [terative linear solvers (Belos)

= Parallel linear algebra (Tpetra)
= Thread parallelism (Kokkos)

= Sparse direct solvers (Amesos2)
= Direct+iterative solvers (ShyLU)

= Algebraic preconditioners (Ifpack2)

= Algebraic multigrid (MuelLu)
= Segregated block solvers (Teko)

Green: Programming model

: Provide data & kernels
Belos only uses underlying linear Blue: Use data & kernels directly
algebra implementation through Red: Use kernels abstractly
abstract interface (note for later)

4
I

Communication-avoiding Krylov) .

AN Aoe@- @)

(s
/ {DD@ - @}

d0S1

Orthogonalize

Regular Krylov: data Communication-avoiding
dependency forces >= 2 a.k.a. s-step Krylov:
communication rounds Reorganize algorithm to
per iteration break dependency

Details: Hoemmen 2010

=
1

Pipelined Krylov (e.g., CG)

Iteration Loop prd
L 2
3 Merged VecOps %
A ‘
Regular CG 1 all-reduce CG < 0
Overlap I Preconditioner I CD
- —
Iteration Loop IIteration Loop 1 VecOp m
1 VecOp (F
4 VecOps I4 Merged VecOps -
[‘ N
‘ ” Overl:

1 VecOp | Preconditioner e e
ol
N

2 VecOps

Preconditioner
Iteration Loop

2 VecOps
O
Overlap p—
End Loop g
s ~ A P ,v 8

% e - [10 Merged VecOpsl
N 7 e
~ 7 .y
Se . -

We added these to Trilinos F ~

2 pipelined CG variants

Pipelined CA-GMRES (re)orthog. .

start vector for new s

new s vectors

Previous s vectors

/

o ¥

More previous vectors

[III_IIIIIIII!I!IIIIIIIIIIIIIll!IIIII_IIIIIIII!I!IIIII_IIIIIIII!I!IIIIIIIIIIIIIll!IIIIIIIIIIIIIlI!IIIII_IIIIkr

CGS with Q

CholQR of P

CGS: Classical Gram-Schmidt
1 reduce CGS + CholQR dot

1. [CG]=[QP]T*P <=

2. Q=Q-C*P,G=G-CT*C
3. R=chol(G),Q=Q/R
= (Next iteration orthog’s P)

Above + reorthogonalize P dot

1. [T, C;G1,G]=[Q P]" * [P, P] «

2. R’=chol(G1),P’=P /R’
3. Update C & G, then 2-3 above

MGS, CGS2, ...: NREL talk today!
PDSEC’17; adding to Trilinos soon

Krylov methods we implemented @&

= Available now in Trilinos

= Prototypes to be deployed soon

Pipelined CG (Ghysels & Vanroose 2012)

1 all-reduce CG (Saad ‘85, D’Azevedo ‘93)
Pipelined GMRES (Ghysels et al. 2016)

1 all-reduce GMRES (Ghysels et al. 2016)

CA-GMRES (Hoemmen 2010)

Pipelined CA-GMRES (Yamazaki)
= See our PDSEC 2017 paper
= Results later in this talk

Cool ideas from NREL folks

Nalu Wind performance results UL

= Nalu Wind (CFD)

= github.com/exawind/nalu-wind

= |Low Mach, unstructured, C++
= Trilinos & Hypre linear solves
= Sierra Tool Kit (STK) meshes
= Can handle >> 10”9 dofs

= Problem: Simulate air flow
around wind turbine(s)

= Hybrid RANS-LES (RANS near
blade, LES in wake)

= 95 M dofs / linear system

>
|
s
=
Q
ie]
(0]
=

= Segregated physics
= NERSC Cori: Haswell, 32 ¢/n

Image credit: Domino, Barone, & Bruner, 2018

Time to solution: Pressure system @&,

—-O— GMRES+ICGS
—O— s-step, newton, CGS+CholQR
G —7— s-step, newton, low-synch CGS2x+CholQR2
3| —B—s-step, newton, low-synch CGS+CholQR2 |
10 —£A— s-step, monom, low-synch CGS+CholQR2
— — linear
)
£
c
S
5
o
7]
S
5]
|_

102 Y
1.4x 1.4x 1.4x 33
1.4x 1.3x 1.3x 184 I,_ Speedups over
1:5x% 1.4x 1.4x 1.4
1.4x 1.4x Infx regUIar GMRES

256 512 1024 2048 4096

Process count

* Muelu algebraic multigrid + (GMRES or Pipelined CA-GMRES w/ s=5)
* Newton (Ritz values from first s iterations as shifts) or monomial basis
* CholQR: Cholesky to implement TSQR; CholQR2: iterative refinement
* CGS2x: full reorthogonalization, 2 all-reduces / s steps; else 1/ s

10

Time to solution: Momentum system

45

15

10

35 -
30 -

25 |

20_‘

0.9x

—6— GMRES+ICGS | -
£ pipelined+CGS |
—+—linear]

4096

8192 16384

* Symmetric Gauss-Seidel preconditioner + (GMRES, Pipelined CA-GMRES)
* Newton basis (Ritz values from first s iterations as shifts), s=5

e Pipelined (depth = 1)

* No reorthogonalization here (just happens to be what we measured)

11

Software engineering challenges = @&

= Goal: Make new solvers available for users
= Production-ready software, not research-ware
= “Users”: App users, engineers, not solver experts
= “Available”: via run-time choice (input deck)
= New solvers need new linear algebra ops
= Esp. nonblocking dot products (using e.g., MPI_lallreduce)
= (Belos already designed for block orthogonalization (TSQR))

= Challenges

= Belos must work for ANY linear algebra library, including users’
= Trilinos must work for MPI_VERSION < 3 (no MPI_lallreduce)

Belos” premature optimization .

= Trilinos’ iterative linear solvers live in the Belos package

= Belos works for any linear algebra (LA) implementation
= Via polymorphism on Vectors & Linear Operators (matrix, prec)
= Belos ignorant of LA details: knows only dot, norm, mat-vec, etc.
= Users can give Belos their own LA types

= Belos uses compile-time polymorphism
= Template parameters: Vector, Linear Operator
= (C++) traits classes define fixed set of LA ops for Belos’ solvers
= Users w/ custom LA types must specialize traits classes

= Premature optimization; hinders adding solvers
= Adding new ops to traits would break users’ specializations
= LA ops take much longer than virtual method call overhead

" Run-time polymorphism =» could add new ops w/ default impls 4

Linear algebra - specific solvers) e

= Belos’ solvers historically had 1 implementation for all LA
= Now we want solvers that only work for specific LA (Tpetra)
= Problem: Access new solvers, w/out user code changes

* Must plug solvers into Belos::SolverFactory (name -2 instance)
= But SolverFactory is (was) agnostic of LA, just like (most) solvers!
= Solution: Inject custom LA-specific factory at run time (Dll)
= Specializations of SolverFactory can take run-time “custom factories”
= Write new solvers to be “their own factories”

Tpetra also templated, but we fix set of allowed args at config time
= =» can write opaque “register S{SOLVER} w/ factory” function
= Tpetra specialization of SolverFactory calls registration function

= Side benefit: No extra build time cost for new solvers

14

Nonblocking dot products) i,

= MPI 3 (2012) added support for nonblocking collectives

= MPI_lallreduce: nonblocking version of MPI_Allreduce

= Trilinos’ interface to nonblocking dot product:
= auto request = idot(&result, x, y); // € MUST NOT BLOCK
= /* .. do other stuff ... Then */ request->wait();

= What if Trilinos was built with MPI < 3?

= Capture (&result, x, y) in a closure (C++11 lambda)
= Closure does blocking dot product; don’t invoke closure yet
= request->wait() just invokes the closure as std::function

= We write the solver once; it works for all MPI versions

15

Conclusions .

= Deployed communication-avoiding & pipelined Krylov
methods in Trilinos

= |mproved solve performance in Nalu Wind by up to 1.5x

= Did so without breaking software backwards compatibility

Thank you!! UL

= Qur NREL collaborators

= Chris Luchini (SNL) & other Nalu developers
= ECP PEEKS, for funding

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed
platforms, in support of the nations exascale computing imperative.

