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Outline

■ Communication-avoiding & pipelined Krylov solvers

■ Like other Krylov methods, solve linear systems Ax=b iteratively

■ Avoid (do less) or hide (overlap) communication

■ Algorithms are (mostly) prior work, some our own

■ We implemented these solvers in Trilinos

■ Trilinos: Big C++ production math library

■ Parallel: MPI + threads (e.g., OpenMP, CUDA)

■ I'll talk about 2 software engineering challenges today

■ Deployed solvers in ECP ExaWind application

■ ExaWind: Simulate multiple wind turbines & wakes in terrain

■ See talk by our NREL collaborators in this minisymposium

■ 1.5x faster on Cori Haswell; results soon on other architectures
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What is Trilinos?

• Parallel math libraries for science & engineering applications

• Sparse matrices & parallel distributions

• Linear solvers & preconditioners

• Nonlinear solvers, optimization, ...

• ' 20 years' continuous development

• Mostly C++11, some C & Fortran

• Supports many different platforms

• CPUs: x86, KNL, POWER, ARM, ...

• GPUs: NVIDIA, AMD in progress, ...

• github.Lom/trilinos/Trilino 

• Users inside & outside Sandia
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Trilinos' linear solvers

• Iterative linear solvers (Belos)

• Parallel linear algebra (Tpetra)

• Thread parallelism (Kokkos)

• Sparse direct solvers (Amesos2)

• Direct+iterative solvers (ShyLU)

• Algebraic preconditioners (Ifpack2)

• Algebraic multigrid (MueLu)

• Segregated block solvers (Teko)

Belos only uses underlying linear
algebra implementation through
abstract interface (note for Iater)

eios
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Green: Programming model
Yellc : Provide data & kernels
Blue: Use data & kernels directly
Red: Use kernels abstractly
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Communication-avoiding Krylov

SpMV

Avk

Orthogonalize2
Regular Krylov: data
dependency forces >= 2
communication rounds
per iteration

{
}

Communication-avoiding
a.k.a. s-step Krylov:
Reorganize algorithm to
break dependency

Details: Hoemmen 2010
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Pipelined Krylov (e.g., CG)

Regular CG 1 all-reduce CG

Iteration Loop

Preeonditioner

go.

We added these to Trilinos
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• CGS: Classical Gram-Schmidt

• 1 reduce CGS + ChoIQR dot

1. [C; G] = [Q, P]T * P

2. Q = Q— C * P, G = G — CI* C

3. R = chol(G), Q = Q/ R

• (Next iteration orthog's P)

• Above + reorthogonalize P dot

1. [T, C; G1, G] = [Q, P]T * [P', P] 4-
2. R' = chol(G1), P' = P / R'

3. Update C & G, then 2-3 above

• MGS, CGS2, ...: NREL talk today!

• PDSEC'17; adding to Trilinos soon



Krylov methods we implemented

• Available now in Trilinos

• Pipelined CG (Ghysels & Vanroose 2012)

• 1 all-reduce CG (Saad '85, D'Azevedo '93)

• Pipelined GMRES (Ghysels et al. 2016)

• 1 all-reduce GMRES (Ghysels et al. 2016)

• CA-GMRES (Hoemmen 2010)

• Prototypes to be deployed soon

• Pipelined CA-GMRES (Yamazaki)

See our PDSEC 2017 paper

Results later in this talk

• Cool ideas from NREL folks
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Nalu Wind performance results

■ Nalu Wind (CFD)

■ github.com/exawind/nalu-wind 

■ Low Mach, unstructured, C++

■ Trilinos & Hypre linear solves

■ Sierra Tool Kit (STK) meshes

■ Can handle >> 101'9 dofs

■ Problem: Simulate air flow

around wind turbine(s)

■ Hybrid RANS-LES (RANS near

blade, LES in wake)

■ 95 M dofs / linear system

■ Segregated physics

■ NERSC Cori: Haswell, 32 c/n
Image credit: Domino, Barone, & Bruner, 2018
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Time to solution: Pressure system
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Speedups over

regular GMRES

• MueLu algebraic multigrid + (GMRES or Pipelined CA-GMRES w/ s=5)

• Newton (Ritz values from first s iterations as shifts) or monomial basis

• ChoIQR: Cholesky to implement TSQR; CholQR2: iterative refinement

• CGS2x: full reorthogonalization, 2 all-reduces / s steps; else 1 / s
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Time to solution: Momentum system

4096

1 .0x

8192

—9— GMRES+ICGS
pipelined+CGS

—I— linear

16384
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• Symmetric Gauss-Seidel preconditioner + (GMRES, Pipelined CA-GMRES)

• Newton basis (Ritz values from first s iterations as shifts), s=5

• Pipelined (depth = 1)

• No reorthogonalization here (just happens to be what we measured)
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Software engineering challenges

■ Goal: Make new solvers available for users

■ Production-ready software, not research-ware

• "Users": App users, engineers, not solver experts

■ "Available": via run-time choice (input deck)

■ New solvers need new linear algebra ops

■ Esp. nonblocking dot products (using e.g., MPI_Iallreduce)

• (Belos already designed for block orthogonalization (TSQR))

■ Challenges

■ Belos must work for ANY linear algebra library, including users'

■ Trilinos must work for MPI_VERSION < 3 (no MPI_Iallreduce)
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Belos' premature optimization

• Trilinos' iterative linear solvers live in the Belos package

• Belos works for any linear algebra (LA) implementation

• Via polymorphism on Vectors & Linear Operators (matrix, prec)

• Belos ignorant of LA details: knows only dot, norm, mat-vec, etc.

• Users can give Belos their own LA types

• Belos uses compile-time polymorphism

• Template parameters: Vector, Linear Operator

• (C++) traits classes define fixed set of LA ops for Belos' solvers

• Users w/ custom LA types must specialize traits classes 

• Premature optimization; hinders adding solvers

• Adding new ops to traits would break users' specializations

• LA ops take much longer than virtual method call overhead

• Run-time polymorphism 4 could add new ops w/ default impls
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Linear algebra - specific solvers

• Belos' solvers historically had 1 implementation for all LA

• Now we want solvers that only work for specific LA (Tpetra)

• Problem: Access new solvers, w/out user code changes

• Must plug solvers into Belos::SolverFactory (name 4 instance)
• But SolverFactory is (was) agnostic of LA, just Iike (most) solvers!

• Solution: Inject custom LA-specific factory at run time (DII)

• Specializations of SolverFactory can take run-time "custom factories"

• Write new solvers to be "their own factories"

• Tpetra also templated, but we fix set of allowed args at config time

• 4 can write opaque "register ${SOLVER} w/ factory" function

• Tpetra specialization of SolverFactory calls registration function

• Side benefit: No extra build time cost for new solvers
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Nonblocking dot products

■ MPI 3 (2012) added support for nonblocking collectives

■ MPI_Iallreduce: nonblocking version of MPI_Allreduce

■ Trilinos' interface to nonblocking dot product:

■ auto request = idot(&result, x, y); // (— MUST NOT BLOCK

■ /* ... do other stuff ... Then */ request->wait();

■ What if Trilinos was built with MPI < 3?

■ Capture (&result, x, y) in a closure (C++11 lambda)

■ Closure does blocking dot product; don't invoke closure yet

■ request->wait() just invokes the closure as std::function

■ We write the solver once; it works for all MPI versions
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Conclusions

■ Deployed communication-avoiding & pipelined Krylov
methods in Trilinos

■ Improved solve performance in Nalu Wind by up to 1.5x

■ Did so without breaking software backwards compatibility
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Thank you!!
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■ Our NREL collaborators

■ Chris Luchini (SNL) & other Nalu developers

■ ECP PEEKS, for funding
■ This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort

of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system engineering and early testbed

platforms, in support of the nations exascale computing imperative.
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