
Exceptional service in the national interest
Sandia
National
Laboratories

Communication-avoiding &
pipelined Krylov solvers in Trilinos

lchitaro Yamazaki (UTK) & Mark Hoemmen (SNL)

SIAM CSE, 28 Feb 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, lnc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

SAND2019-2445C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



Outline

■ Communication-avoiding & pipelined Krylov solvers

■ Like other Krylov methods, solve linear systems Ax=b iteratively

■ Avoid (do less) or hide (overlap) communication

■ Algorithms are (mostly) prior work, some our own

■ We implemented these solvers in Trilinos

■ Trilinos: Big C++ production math library

■ Parallel: MPI + threads (e.g., OpenMP, CUDA)

■ I'll talk about 2 software engineering challenges today

■ Deployed solvers in ECP ExaWind application

■ ExaWind: Simulate multiple wind turbines & wakes in terrain

■ See talk by our NREL collaborators in this minisymposium

■ 1.5x faster on Cori Haswell; results soon on other architectures

Sandia
National
Laboratories

2



What is Trilinos?

• Parallel math libraries for science & engineering applications

• Sparse matrices & parallel distributions

• Linear solvers & preconditioners

• Nonlinear solvers, optimization, ...

• ' 20 years' continuous development

• Mostly C++11, some C & Fortran

• Supports many different platforms

• CPUs: x86, KNL, POWER, ARM, ...

• GPUs: NVIDIA, AMD in progress, ...

• github.Lom/trilinos/Trilino 

• Users inside & outside Sandia

samommINIMIIMMIIIIIIINIIIIIT

Sandia
National
Laboratories

3



Trilinos' linear solvers

• Iterative linear solvers (Belos)

• Parallel linear algebra (Tpetra)

• Thread parallelism (Kokkos)

• Sparse direct solvers (Amesos2)

• Direct+iterative solvers (ShyLU)

• Algebraic preconditioners (Ifpack2)

• Algebraic multigrid (MueLu)

• Segregated block solvers (Teko)

Belos only uses underlying linear
algebra implementation through
abstract interface (note for Iater)

eios

Sandia
National
Laboratories

Muereg

fpack2

ShyL

Tpetra

okkos

Green: Programming model
Yellc : Provide data & kernels
Blue: Use data & kernels directly
Red: Use kernels abstractly

4



Communication-avoiding Krylov

SpMV

Avk

Orthogonalize2
Regular Krylov: data
dependency forces >= 2
communication rounds
per iteration

{
}

Communication-avoiding
a.k.a. s-step Krylov:
Reorganize algorithm to
break dependency

Details: Hoemmen 2010

Sanda
National
Laboratories

5



Pipelined Krylov (e.g., CG)

Regular CG 1 all-reduce CG

Iteration Loop

Preeonditioner

go.

We added these to Trilinos

Sandia
National
Laboratories

'Iteration Loop

3 Merged VecOps

Overlap Non-blockingl
Allreduce

Preconditioner

1 VecOp I

4 Merged VecOps

Overlap lion-blocking
rAllreduce d

MatVec

End Loopl--.0.

z
co

rn

rD

U-1

-0
rn

2 pipelined CG variants
6



Pipelined CA-GMRES (re)orthog.
start vector for new s

Pr
ev

io
us

 s
 v
ec

to
rs

 

new s vectors

CGS with Q ChoIQR of P

Sandia
National
Laboratories

• CGS: Classical Gram-Schmidt

• 1 reduce CGS + ChoIQR dot

1. [C; G] = [Q, P]T * P

2. Q = Q— C * P, G = G — CI* C

3. R = chol(G), Q = Q/ R

• (Next iteration orthog's P)

• Above + reorthogonalize P dot

1. [T, C; G1, G] = [Q, P]T * [P', P] 4-
2. R' = chol(G1), P' = P / R'

3. Update C & G, then 2-3 above

• MGS, CGS2, ...: NREL talk today!

• PDSEC'17; adding to Trilinos soon



Krylov methods we implemented

• Available now in Trilinos

• Pipelined CG (Ghysels & Vanroose 2012)

• 1 all-reduce CG (Saad '85, D'Azevedo '93)

• Pipelined GMRES (Ghysels et al. 2016)

• 1 all-reduce GMRES (Ghysels et al. 2016)

• CA-GMRES (Hoemmen 2010)

• Prototypes to be deployed soon

• Pipelined CA-GMRES (Yamazaki)

See our PDSEC 2017 paper

Results later in this talk

• Cool ideas from NREL folks

Sandia
National
Laboratories

Trifinos
8



Nalu Wind performance results

■ Nalu Wind (CFD)

■ github.com/exawind/nalu-wind 

■ Low Mach, unstructured, C++

■ Trilinos & Hypre linear solves

■ Sierra Tool Kit (STK) meshes

■ Can handle >> 101'9 dofs

■ Problem: Simulate air flow

around wind turbine(s)

■ Hybrid RANS-LES (RANS near

blade, LES in wake)

■ 95 M dofs / linear system

■ Segregated physics

■ NERSC Cori: Haswell, 32 c/n
Image credit: Domino, Barone, & Bruner, 2018

Sandia
National
Laboratories

9



Time to solution: Pressure system

To
ta

l 
so
lu
ti
on
 t
im

e 

103

10

256

- GMRES+ICGS
—0—s step, newton, CGS+CholQR
—V— s step, newton, low-synch CGS2x+ChoIQR2
—B—s step, newton, low-synch CGS+ChoIQR2

s step, rnonom, low-synch CGS+CholQR2
— — linear

1.4x 1.4x 1.4x
1.4x 1.3x 1.3x
1.5x 1.4x 1.4x
1.4x 

512 1024

Process count
2048 4096

Sandia
National
Laboratories

Speedups over

regular GMRES

• MueLu algebraic multigrid + (GMRES or Pipelined CA-GMRES w/ s=5)

• Newton (Ritz values from first s iterations as shifts) or monomial basis

• ChoIQR: Cholesky to implement TSQR; CholQR2: iterative refinement

• CGS2x: full reorthogonalization, 2 all-reduces / s steps; else 1 / s

10



Time to solution: Momentum system

4096

1 .0x

8192

—9— GMRES+ICGS
pipelined+CGS

—I— linear

16384

x

• Symmetric Gauss-Seidel preconditioner + (GMRES, Pipelined CA-GMRES)

• Newton basis (Ritz values from first s iterations as shifts), s=5

• Pipelined (depth = 1)

• No reorthogonalization here (just happens to be what we measured)

Sandia
National
Laboratories

11



Software engineering challenges

■ Goal: Make new solvers available for users

■ Production-ready software, not research-ware

• "Users": App users, engineers, not solver experts

■ "Available": via run-time choice (input deck)

■ New solvers need new linear algebra ops

■ Esp. nonblocking dot products (using e.g., MPI_Iallreduce)

• (Belos already designed for block orthogonalization (TSQR))

■ Challenges

■ Belos must work for ANY linear algebra library, including users'

■ Trilinos must work for MPI_VERSION < 3 (no MPI_Iallreduce)

Sandia
National
Laboratories

12



Belos' premature optimization

• Trilinos' iterative linear solvers live in the Belos package

• Belos works for any linear algebra (LA) implementation

• Via polymorphism on Vectors & Linear Operators (matrix, prec)

• Belos ignorant of LA details: knows only dot, norm, mat-vec, etc.

• Users can give Belos their own LA types

• Belos uses compile-time polymorphism

• Template parameters: Vector, Linear Operator

• (C++) traits classes define fixed set of LA ops for Belos' solvers

• Users w/ custom LA types must specialize traits classes 

• Premature optimization; hinders adding solvers

• Adding new ops to traits would break users' specializations

• LA ops take much longer than virtual method call overhead

• Run-time polymorphism 4 could add new ops w/ default impls

Sandia
National
Laboratories

13



Linear algebra - specific solvers

• Belos' solvers historically had 1 implementation for all LA

• Now we want solvers that only work for specific LA (Tpetra)

• Problem: Access new solvers, w/out user code changes

• Must plug solvers into Belos::SolverFactory (name 4 instance)
• But SolverFactory is (was) agnostic of LA, just Iike (most) solvers!

• Solution: Inject custom LA-specific factory at run time (DII)

• Specializations of SolverFactory can take run-time "custom factories"

• Write new solvers to be "their own factories"

• Tpetra also templated, but we fix set of allowed args at config time

• 4 can write opaque "register ${SOLVER} w/ factory" function

• Tpetra specialization of SolverFactory calls registration function

• Side benefit: No extra build time cost for new solvers

Sandia
National
Laboratories

14



Nonblocking dot products

■ MPI 3 (2012) added support for nonblocking collectives

■ MPI_Iallreduce: nonblocking version of MPI_Allreduce

■ Trilinos' interface to nonblocking dot product:

■ auto request = idot(&result, x, y); // (— MUST NOT BLOCK

■ /* ... do other stuff ... Then */ request->wait();

■ What if Trilinos was built with MPI < 3?

■ Capture (&result, x, y) in a closure (C++11 lambda)

■ Closure does blocking dot product; don't invoke closure yet

■ request->wait() just invokes the closure as std::function

■ We write the solver once; it works for all MPI versions

Sandia
National
Laboratories

15



Conclusions

■ Deployed communication-avoiding & pipelined Krylov
methods in Trilinos

■ Improved solve performance in Nalu Wind by up to 1.5x

■ Did so without breaking software backwards compatibility

Sandia
National
Laboratories

16



Thank you!!
Sandia
National
Laboratories

■ Our NREL collaborators

■ Chris Luchini (SNL) & other Nalu developers

■ ECP PEEKS, for funding
■ This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort

of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system engineering and early testbed

platforms, in support of the nations exascale computing imperative.

17


