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Outline ) e,

= Communication-avoiding & pipelined Krylov solvers
= Like other Krylov methods, solve linear systems Ax=b iteratively
= Avoid (do less) or hide (overlap) communication

= Algorithms are (mostly) prior work, some our own

= We implemented these solvers in Trilinos

= Trilinos: Big C++ production math library
= Parallel: MPI + threads (e.g., OpenMP, CUDA)
= |’ll talk about 2 software engineering challenges today

= Deployed solvers in ECP ExaWind application
= ExaWind: Simulate multiple wind turbines & wakes in terrain

= See talk by our NREL collaborators in this minisymposium
= 1.5x faster on Cori Haswell; results soon on other architectures




What is Trilinos? ==

Parallel math libraries for science & engineering applications
= Sparse matrices & parallel distributions
= Linear solvers & preconditioners
= Nonlinear solvers, optimization, ...

~ 20 years’ continuous development
Mostly C++11, some C & Fortran

Supports many different platforms
= CPUs: x86, KNL, POWER, ARM, ...
= GPUs: NVIDIA, AMD in progress, ...

github.com/trilinos/Trilinos

Users inside & outside Sandia




Trilinos’ linear solvers ) 2=

= [terative linear solvers (Belos)

= Parallel linear algebra (Tpetra)
= Thread parallelism (Kokkos)

= Sparse direct solvers (Amesos2)
= Direct+iterative solvers (ShyLU)

= Algebraic preconditioners (Ifpack2)

= Algebraic multigrid (MuelLu)
= Segregated block solvers (Teko)

Green: Programming model

: Provide data & kernels
Belos only uses underlying linear Blue: Use data & kernels directly
algebra implementation through Red: Use kernels abstractly
abstract interface (note for later)
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Communication-avoiding Krylov ) .
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Regular Krylov: data Communication-avoiding
dependency forces >= 2 a.k.a. s-step Krylov:
communication rounds Reorganize algorithm to
per iteration break dependency

Details: Hoemmen 2010
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Pipelined Krylov (e.g., CG)
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We added these to Trilinos F ~

2 pipelined CG variants




Pipelined CA-GMRES (re)orthog. .
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CGS with Q

CholQR of P

CGS: Classical Gram-Schmidt
1 reduce CGS + CholQR dot

1. [CG]=[QP]T*P <=

2. Q=Q-C*P,G=G-CT*C
3. R=chol(G),Q=Q/R
= (Next iteration orthog’s P)

Above + reorthogonalize P dot

1. [T, C;G1,G]=[Q P]" * [P, P] «

2. R’=chol(G1),P’=P /R’
3. Update C & G, then 2-3 above

MGS, CGS2, ...: NREL talk today!
PDSEC’17; adding to Trilinos soon




Krylov methods we implemented @&

= Available now in Trilinos

= Prototypes to be deployed soon

Pipelined CG (Ghysels & Vanroose 2012)

1 all-reduce CG (Saad ‘85, D’Azevedo ‘93)
Pipelined GMRES (Ghysels et al. 2016)

1 all-reduce GMRES (Ghysels et al. 2016)

CA-GMRES (Hoemmen 2010)

Pipelined CA-GMRES (Yamazaki)
= See our PDSEC 2017 paper
= Results later in this talk

Cool ideas from NREL folks




Nalu Wind performance results UL

= Nalu Wind (CFD)

= github.com/exawind/nalu-wind

= |Low Mach, unstructured, C++
= Trilinos & Hypre linear solves
= Sierra Tool Kit (STK) meshes
= Can handle >> 10”9 dofs

= Problem: Simulate air flow
around wind turbine(s)

= Hybrid RANS-LES (RANS near
blade, LES in wake)

= 95 M dofs / linear system
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= Segregated physics
= NERSC Cori: Haswell, 32 ¢/n

Image credit: Domino, Barone, & Bruner, 2018




Time to solution: Pressure system @&,
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* Muelu algebraic multigrid + (GMRES or Pipelined CA-GMRES w/ s=5)
* Newton (Ritz values from first s iterations as shifts) or monomial basis
* CholQR: Cholesky to implement TSQR; CholQR2: iterative refinement
* CGS2x: full reorthogonalization, 2 all-reduces / s steps; else 1/ s
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Time to solution: Momentum system
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* Symmetric Gauss-Seidel preconditioner + (GMRES, Pipelined CA-GMRES)
* Newton basis (Ritz values from first s iterations as shifts), s=5

e Pipelined (depth = 1)

* No reorthogonalization here (just happens to be what we measured)
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Software engineering challenges = @&

= Goal: Make new solvers available for users
= Production-ready software, not research-ware
= “Users”: App users, engineers, not solver experts
= “Available”: via run-time choice (input deck)
= New solvers need new linear algebra ops
= Esp. nonblocking dot products (using e.g., MPI_lallreduce)
= (Belos already designed for block orthogonalization (TSQR))

= Challenges

= Belos must work for ANY linear algebra library, including users’
= Trilinos must work for MPI_VERSION < 3 (no MPI_lallreduce)




Belos” premature optimization .

= Trilinos’ iterative linear solvers live in the Belos package

= Belos works for any linear algebra (LA) implementation
= Via polymorphism on Vectors & Linear Operators (matrix, prec)
= Belos ignorant of LA details: knows only dot, norm, mat-vec, etc.
= Users can give Belos their own LA types

= Belos uses compile-time polymorphism
= Template parameters: Vector, Linear Operator
= (C++) traits classes define fixed set of LA ops for Belos’ solvers
= Users w/ custom LA types must specialize traits classes

= Premature optimization; hinders adding solvers
= Adding new ops to traits would break users’ specializations
= LA ops take much longer than virtual method call overhead

" Run-time polymorphism =» could add new ops w/ default impls 4




Linear algebra - specific solvers ) e

= Belos’ solvers historically had 1 implementation for all LA
= Now we want solvers that only work for specific LA (Tpetra)
= Problem: Access new solvers, w/out user code changes

* Must plug solvers into Belos::SolverFactory (name -2 instance)
= But SolverFactory is (was) agnostic of LA, just like (most) solvers!
= Solution: Inject custom LA-specific factory at run time (Dll)
= Specializations of SolverFactory can take run-time “custom factories”
= Write new solvers to be “their own factories”

Tpetra also templated, but we fix set of allowed args at config time
= =» can write opaque “register S{SOLVER} w/ factory” function
= Tpetra specialization of SolverFactory calls registration function

= Side benefit: No extra build time cost for new solvers
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Nonblocking dot products ) i,

= MPI 3 (2012) added support for nonblocking collectives

= MPI_lallreduce: nonblocking version of MPI_Allreduce

= Trilinos’ interface to nonblocking dot product:
= auto request = idot(&result, x, y); // € MUST NOT BLOCK
= /* .. do other stuff ... Then */ request->wait();

= What if Trilinos was built with MPI < 3?

= Capture (&result, x, y) in a closure (C++11 lambda)
= Closure does blocking dot product; don’t invoke closure yet
= request->wait() just invokes the closure as std::function

= We write the solver once; it works for all MPI versions

15




Conclusions .

= Deployed communication-avoiding & pipelined Krylov
methods in Trilinos

= |mproved solve performance in Nalu Wind by up to 1.5x

= Did so without breaking software backwards compatibility




Thank you!! UL

= Qur NREL collaborators

= Chris Luchini (SNL) & other Nalu developers
= ECP PEEKS, for funding

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering and early testbed
platforms, in support of the nations exascale computing imperative.




