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2 The Problem

We have systems that require:
o Low levels of power

o For a very long time

Solar power is not available

Space Systems
o Satellites

O Probes

o Landers

o Extraterrestrial Experiments

Terrestrial Systems
O Remote Outposts

O Cars

O Hot Machinery t Waste heat recovery

Voyager 1 and 2

Cassini

Apollo ALSEP

New Horizons

*all images courtesy of Wikipedia

Viking 1 and 2

Curiosity Rover
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3 State-of-the-Art Solutions

Need to convert heat into electricit

Thermoelectrics

o Materials are difficult to manufacture, fragile, and expensive

0 BiTe, PbTe, CoAs3

O Require high temperatures to operate

o Must physically touch the hot source 4 Cracking

Thermophotovoltaics

o Difficult materials to work with

0 InGaAsSb

O Require high temperatures to operate

o Non-contact (use radiated IR light)

•



4 New Solution - Rectennas

Take the non-contact idea from thermophotovoltaics

Use the continuous (wave) properties of light instead of the quantum (particle) properties

Photovoltaics

Thermalization

Carrier Collection

Quantized absorption

37.5 THz

Continuous
Antenna

Absorption

Rectennas

Current
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5 Rectenna History

Developed in 1960's for RF power transmission

Highest reported efficiency > 92%

° Carnot Efficiency Limits?

0 Narrow Band Sources

Made possible by a new high speed diode (Schottky diode)

° This problem gets worse at optical frequencies

f = 2.45 GHz

T ', = % 400ps

C < 1.3pF

An early rectenna powered helicopter

Brown, J. Microwave Power, 1966

R antenna '-'-'' 5012

C diode load



6 Infrared Rectenna Problems

RC time constant and transport speed
• f -,=-; 40 THz

• C < 80 aF 4 limited by parasitic capacitance

o Really small devices

o T ^~ 25 fs 4 limited by electron saturation velocity

o Tunnel diodes

Manufacturability

o Need large area manufacturing

O Antenna dimensions must match wavelength

O Capacitors must be really small

O Avoid exotic materials for tunnel diodes

Fumeaux et. al. infrared Phys. Technol., 1998

Kinzel et al., Microwave Opt. Technol. Lett., 2013



7 Our Solution

Travelling wave design

o Use distributed R and C rather than discrete devices

MOS tunnel diode
o CMOS compatible process

• Controlled tunnel oxide (Thermal Si02 on Si)

o Large area manufacturing

o Standard, cheap materials (Si, Sio2, Al)

Structured surface antenna
o Easy planar geometry

o Design light coupling with spoof plasmons

•



8 Tasks

Get light in
o Reflected light generates no power

Concentrate E-field
O V = E • do,

Rectify

o Turn an AC field into DC current
d.„{

Aluminum Structured Surface Antenna

Si02 Tunnel Barrier

Silicon Wafer



9 Getting Light In

Structured surface designed to couple light in at 7 — 8 um to match low-temperature thermal sources
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10 Concentrating the E-field

Use an Epsilon Near Zero (ENZ) material
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11 Figure of Merit

Electron Tunneling Current Couple Light In

j(l) = AT2 (mrmi)2Z0 R 2
m2

Concentrate Electric Field

qtax
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12 Power Generation
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1 4 Spectra Matching
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1 5 Ideas for Future Research

Im rove MIM diodes at low volta es Band limit emissions

Requires materials work

o Work-function control

o Defect / trap management

♦

RF Rectennas achieved high efficiency from
narrow sources

Structured emitter on thermal source

o Match polarization

o Match coupling spectra

////1/11//



1 6 More Information

Davids et al. "Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel
diode", Nat. Nano, v. 10, 2015.

Kadlec et al. "Photon-Phonon-Enhanced Infrared Rectification in a Two-Dimensional
Nanoantenna-Coupled Tunnel Diode", Phys. Rev A, 2016.

Davids et al. "Density matrix approach to photon-assisted tunneling in the transfer Hamiltonian
formalism", Phys. Rev B, 2018.

Shank et al. "Power generation from a radiative thermal source using a large-area infrared rectenna",
Phys. Rev A, 2018.

Come talk to me

■
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18 Experimental Setup
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1 9 Is it a diode?
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20 Tunnel Diodes

Metal-Insulator-Metal (MIM)

V < 0 = 0

Metal-Insulator-Semiconductor (MISdeg)

Fowler-Nordheim Tunnelin• Differential Density of States Tunneling
nows greater asymmetry Shouta exmott asymmetry at tower vottages



21 Multi-mode Rectennas
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22 Process Variations
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