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Modeling spin-orbit coupling in Ge 
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• Goal: understand electric dipole spin resonance (EDSR) experiments for Ge devices

• Approach: work with spin-orbit coupling (SOC) models to understand EDSR details

• Simplest model:

Flsol = ia1(6- 0 rc-F — 6+ 0 rc-)
• Expected form from k • p-theory (E. Marcellina et al., Phys. Rev. B, 2017):

Rs03 = ja3,46- 0 rc — 6+ 0 k2) +
ia3,2 (a_ 0 k_k+k_ — a+ 0 kjc_k+)

• Developing a starting point for a full device-level model

• Single-band effective mass theory for now; potentially misses important details

(A. Mielnik-Pyszczorski et al., Scientific Reports, 2018)

• Work toward a multi-band model that includes more parameters of Ge



Background 
• Magnetoconductivity

experiments (2DHGs), suggest
SOC model better fits k3 than k

B (mT)

[1] R. Moriya et al., Phys. Rev. Lett. 2014

1000

1

0.1 4 5 6 7p (x1011 cm-2)
0.01

• Theory calculations for Ge
(and Si) holes based on
k • p-theory
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[2] B. Venitucci and Y. M. Niquet,
arXiv preprint 2019

• Magnetoconductivity experiments, fit
model assuming SOC is k3

• Experiments from 2DHGs
suggest SOC is k3 in Ge

• Open question for confined QDs

[3] C. T. Chou et al., Nanoscale 2018 3



Workflow 

• Take gate layout and stack
dimensions from device [1]

• Use Laconic [2] to calculate
wavefunctions (w/o spin)
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• Use COMSOL to calculate
device potentials

• Use wavefunctions as a basis for
calculations with spin

kg = (1Palk- ITN) -) 6+ 0 k-
[1] See Will Hardy's talk tomorrow, session L11.00005
[2] Sandia software, led by Andrew Baczewski



Modeling EDSR 
• Compute change in

potential for oscillations of
middle gate

• Crystal axes determine
SOC Hamiltonian

• Driving Hamiltonian:

Hac Vacj)
r• Voltage oscillation: 1[mV], [010 

Applied B-field: 1[T]

• Study Rabi frequency
trends in SOC models
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How we compute Rabi frequencies 

• Full Hamiltonian:

Rfull — Ric + riv + Rso + Rac

kinetic part potential part
(includes B-field)

• Define basis states, lipj), from the eigenstates of ilk + riv, e.g.

spin-orbit part AC drive part

•
1st excited 

0 5th excited • % 10th excitedground • 0
state • state • f 

state 
V 

state

• Using Iii)j)s, expand and diagonalize iik + fly + Rs° to get a new basis, liP:j)

• Calculate the Rabi frequency as
27

fR = Ti KCIRacliPDI
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AC E-field along y AC B-field along x 

• Hamiltonian:

173,2 ---- cc3,2(637 ® (rd + knkx - ax 0 (Q + kOky)
• AC drive reduces Hamiltonian to effective magnetic field along x:

Hac — Vac51 kx — O

y
[010]•

`x
[100]
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AC E-field along y AC B-field along x 

• Hamiltonian:

R312 ''-'-' a3,2 ax 0 (rd + 4)14)

• AC drive reduces Hamiltonian to effective magnetic field along x:

!lac /-% Vaj -> kx - 0 173,2 - ex 0 (rd + rfOrfy -> B so 0(

6„ , k cc : 4 1 1 1

 6,

x
[ 100 ]
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Strong rotations require orthogonal B-fields 

• Should have weak rotations for

• This fits the simulations:

Y
[010r

fR

,
X

[100]

B app 11 B50

OC lBapp XBso l

Rabi frequency as a function of magnetic field rotation
(normalized units)
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rri2

3n/2

Sandia
National
Laboratories

9



Importance of crystal axes to device design 

• Coordinate system determines form of HS03
• fc,c and rcy set by crystal axes
• Rotation about the z-axis changes fis03

• B 50 is then a function of the crystal axes as
well as the dipole perturbation
• This adjusts the previous structure

,c23
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• Rotation of the spin-orbit field as a
function of charge-carrier direction of
motion for

R3,1 = ia3,1(a- 0 -Q — 6+ 0 fc2)

R. Moriya et al., PRL 2014
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Importance of crystal axes to device design 

• Coordinate system determines form of Rs03

• fc,c and rcy set by crystal axes
• Rotation about the z-axis changes fis03
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• Rotation of the spin-orbit field as a
function of charge-carrier direction of
motion for

R3,1 = ia3,1(a- 0 -Q — 6+ 0 fc2)

• Bso is then a function of the crystal axes as R. Moriya et al., PRL 2014

well as the dipole perturbation
• This adjusts the previous structure

• We can explore the relative alignment of the
crystal, dipole, and applied B-field
• Fix dipole to original y-axis

• Fix B-field to original x-axis

• Rotate crystal axes

Rabi frequency as a function of crystal axis rotation
(normalized units)

IT

rr12

3n/2
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Future work

■ Incorporate more microscopic details

■ QW band structure as a function of material conditions (effective masses)

■ Multi-band effective mass theory (light and heavy hole)

■ Static and dynamic noise sources

■ Understand and optimize single-qubit gate fidelities

■ Model two-qubit gate
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Crystallographic axes relative to device design 

• Form of Rs03 imposes coordinate system

• Crystal axes set by fc, and Icy
• Rotation about the z-axis changes fis03

• B so is then a function of the crystal axes as
well as the dipole perturbation
• This adjusts the previous structure

• We can explore the relative alignment of
the crystal, dipole, and applied B-field
• Fix dipole to original y-axis

• Rotate B-field

• Rotate crystal axes

c13
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• Rotation of the spin-orbit field as a
function of charge-carrier direction of
motion for

R3,1 = ia3,1(a- 0 — 6+ 0 fc2)

R. Moriya et al., PRL 2014

Rabi frequency vs. field and crystal rotations
(normalized units)
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Qubit basis

• Without SOC:

10) IT) 0 0

il) il) 0 0

• With SOC:

10) = alT) 0 0

11) — AT) 0 00

Sandia
National
Laboratories

16



Linear SOC 

• Hamiltonian:

Rsol = ia1(6- 0 1
-a, 0 IL)

• Gate oscillation coupling:

pc:Lc ' Vaj
• Rabi frequency low when

B app 1 51\

in the xy-plane, high when

13 app 11 3'

z Li ne a r SOC 0-60 Rabi frequency [Hz]
vs. magnetic field direction 1e9
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Cubic SOC z

• Hamiltonian:

R3,2 = ja3,2(e- ff-rf+k-
-a+ LELLE)

• Gate oscillation coupling:

bac Vaj

• Similar qualities to linear for
Bapp 1 j, and Bapp II j,
situations

z,

B pp

x

Cubic SOC (H3. Rabi frequency [Hz]

vs. magnetic field direction 1 7
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Understanding SOC trends 

. iis01 =a1(ay — ex ky)

m H3,1 a3,1 (ay VC)2c 314)k)C

•
R3,2

ex - 3Q)ky)

a3,2 (e y (r )2c + IcOkx
-6x (rd + 4)14)

6S0
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Understanding SOC trends 

m Rso1 '-' 6x  ky

m R3,1 f% 6.9c 0 143

m R3,2 êx 0 r3Cy

n )ac-0-<°4

650
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