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National

Modeling spin-orbit coupling in Ge () .

= Goal: understand electric dipole spin resonance (EDSR) experiments for Ge devices
= Approach: work with spin-orbit coupling (SOC) models to understand EDSR details

= Simplest model:
Hso1 = ia1(6- Q ky — 04 Q k)
= Expected form from k - p-theory (E. Marcellina et al., Phys. Rev. B, 2017):
Hyos = ias,(6- Q@ k3 —6, @ k3) +
ias,(6- @ k_k k_—6, ®k,k_k,)
= Developing a starting point for a full device-level model

= Single-band effective mass theory for now; potentially misses important details
(A. Mielnik-Pyszczorski et al., Scientific Reports, 2018)

= Work toward a multi-band model that includes more parameters of Ge
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Workflow (&) 5=
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« Take gate layout and stack
dimensions from device [1] * Use COMSOL to calculate
- Use Laconic [2] to calculate device potentials

wavefunctions (w/o spin) » Use wavefunctions as a basis for
calculations with spin

.. — kP =k |Yp) > 6, O K

[1] See Will Hardy’s talk tomorrow, session L11.00005
[2] Sandia software, led by Andrew Baczewski




Modeling EDSR

 Compute changein
potential for oscillations of
middle gate

* Crystal axes determine
SOC Hamiltonian
e Driving Hamiltonian:
j?ac “’Lac5> y
» Voltage oscillation: 1[mV], [010]]
Applied B-field: 1|T]
» Study Rabi frequency
trends in SOC models

"X
[100]




How we compute Rabi frequencies () 5.

= Full Hamiltonian:
Hfull = Hy + Hy, + Hyp + Hy,

kinetic part potential part spin-orbit part AC drive part
. ground ‘ 1st excited ‘. 5t excited

(includes B-field)
“ 10t excited
state . state '. state state

= Define basis states, |;), from the eigenstates of H}, + H,, e.g.
= Using |1/)])s expand and diagonalize H, + H, + H,, to get a new basis, |1/J]>

= Calculate the Rabi frequency as

2 _
fr = == | acl))]




AC E-field along y — AC B-field along x @) ..

= Hamiltonian:
H3, = a3, (6, ® (iéyzc + Izgzz)kx — 6, ® (k2 + 12321)123/)
= ACdrive reduces Hamiltonian to effective magnetic field along x:
ﬁac ~ Vacj; —7 kx ~0

éac“”_(’“}—/,

[010]]




AC E-field along y = AC B-field along x () .

= Hamiltonian:
Hs, ~ a3,(6, Qd+T2)k, — 6, ® (kZ + k)ky)
3,2 3,2 % y)Vx X X y/ry
= AC drive reduces Hamiltonian to effective magnetic field along x:
ﬁac ~ Vacj; - ky~0 - ﬁ3,2 ~ 6'x X (ieazc + kaz)iey - B, X X

f)ac—»l?«y

[010]




Strong rotations require orthogonal B-fields ) 5=

= Should have weak rotations for
Bapp I Bso
= This fits the simulations:
fR X |BaprBso|

Rabi frequency as a function of magnetic field rotation
(normalized units)

m2

[010]]

[100]




Importance of crystal axes to device design () .

Q, Y
= Coordinate system determines form of Hg,3 f\l\ + Rotation of the spin-orbit field as a
k:

~ ~ function of charge-carrier direction of
= ky and k,, set by crystal axes " motion for

_ = 7 A A £3 _ A 73
= Rotation about the z-axis changes Hg,3 H3q = iaz1(6- @ ki — 64 @ k2)

B, is then a function of the crystal axesas & Moriya et al., PRL 2014
well as the dipole perturbation

= This adjusts the previous structure




Importance of crystal axes to device design () .

Qs ky
= Coordinate system determines form of H - Rotation of the spin-orbit field as a
~ - K function of charge-carrier direction of
= ky and k,, set by crystal axes " fretian Tor
—~ i & S 1,3 _ ~ 7,3
= Rotation about the z-axis changes H,5 J\‘Q\X Hsy = ias;(6- @ ki -6, @Kk2)
" B, isthen a function of the crystal axes as g woriya et al., PRL 2014
well as the deOIG pe rturbation Rabi frequency as a function of crystal axis rotation
(normalized units)
= This adjusts the previous structure ni2

= We can explore the relative alignment of the
crystal, dipole, and applied B-field
" Fix dipole to original y-axis
= Fix B-field to original x-axis
= Rotate crystal axes




Future work (Fi) B

= |ncorporate more microscopic details
= QW band structure as a function of material conditions (effective masses)
= Multi-band effective mass theory (light and heavy hole)
= Static and dynamic noise sources

= Understand and optimize single-qubit gate fidelities

= Model two-qubit gate
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Crystallographic axes relative to device design @) &k..

Q, Y
= Form of HSO3 imposes coordinate system f‘\z\ * Rotation of the spin-orbit field as a
k:

function of charge-carrier direction of

= Crystal axes set by lAcx and Ey " motion for

= Rotation about the z-axis changes H,,3 ‘\‘Q‘% 3y = ia31(6- @ ki -6, @ k2)
B, is then a function of the crystal axes as g woriya et al., PRL 2014
well as the dipole perturbation Rabi frequency vs. field and crystal rotations

(normalized units)
10

= This adjusts the previous structure

= We can explore the relative alignment of
the crystal, dipole, and applied B-field
" Fix dipole to original y-axis
= Rotate B-field
= Rotate crystal axes

crystal axis rotation

0 nj2 n 3nj2 2n
magnetic field rotation 15




Qubit basis () e,

= Without SOC.: = \With SOC:

0 =ane
0=

+BIL) ® ..
1) =) ® .




() i,
Linear SOC

p Linear SOC (H; ) Rabi frequency [Hz] y
e Hamiltonian: " - vs. magnetic field direction 19 -
Ho1 = i“l(@— ® ky g
—04y @ k)
* Gate oscillation coupling:
Bac ~ Vacy

e Rabi frequency low when
Bapp J‘ 5;
in the xy-plane, high when
Bapp 1Y




G f==
Cubic SOC z

Cubic SOC (H3 1) Rabi frequency [Hz]
vs. magnetic field direction 1e7

\ 4

Bapp I

* Hamiltonian:

Hy, =ias,(6- Q@ k_kik_
—6, @k k_k)
* Gate oscillation coupling:
Bac ~ Vacj;

* Similar qualities to linear for
B,y LYandBg,, I y
situations
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Understanding SOC trends

" Hypr = a1(6, @ ky— 6, Q ky)

. ﬁ3,1 ~ a31(0y ig) (Eazc: 31;321)@ —
6 Q (k2 —3k2)k,)

" H3, = as,(6y (X)A(];?zc N E;)Ex
—6y Q@ (ki + k3)ky)

. D\ac"’Vacy_)kx“’O_)Bsoocf
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Understanding SOC trends ()

~0x®k
~0x®k3
. ﬁ3,2~0x®k;

wm m>

" Dac"’ acy_)kxNO_)Bsoocx




