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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

■ Donor-Dot system

■ Valley splitting, singlet-triplet
splitting, coupling to donors,
and 4-electron trick

■ Enhanced latching readout

■ Singlet-triplet qubit
(hyperfine-driven rotations)

Part 1:
Donor-dot system and
related topics
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

• Universal control using spin-
orbit interaction

• Implications of the spin-orbit
interaction for singlet-triplet
qubits in silicon

Part 2:
Spin-orbit interaction in
silicon dots
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

Can the best characteristics of qubit systems be
combined?

Donor (D) qubits are high fidelity...

Electron spin 1/2:
T2* = 270 ps [1]
T2, CPNAG = 0.98 s [3]

Fprep/read = 97% [4,1]

Fcontrol = 99 q5%

/011 
31

1/cc
.-: .

Nuclear spin 1/2: 
T2* = 600 ms [3]
T2, CPNAG = 36.5 s [3]

Fprep/read = 99995°

Fcoptrol = 99.99%

But they are not easily coupled together!
[1] Muhonen, J. T. et al., Nat Nano 9, 986-991 (2014).
[2] Muhonen, J. T. et al., J. of Physics: Cond. Mat. 27, 154205 (2015).
[3] A. Morello, unpublished.
[4] L. A. Tracy et al, App. Phys. Lett. 108, 063101 (2016).

Quantum dot (QD) qubits are
tunable...

200 nrn
I 1 1 11-1

Singlet-triplet spin qubit in GaAs:
All-electrical control [6]
Two-qubit gates realized [5,6,9]

... many other GaAs and Si realizations now!

But they are not quite as high fidelity!

[5] Shulman, M. D. et al. Science 336, 202-205 (2012).
[6] Petta, J. R. et al. Science 309, 2180-2184 (2005).
[7] Veldhorst, M. et al. Nat Nano 9, 981-985 (2014).
[8] Veldhorst, M. et al. Nature 526, 410-414 (2015).
[9] Nichol, J. M. et al. npj Quantum Information 3, 3 (2017).
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Part 1: Outline

• Donor-Dot system

• Valley splitting, singlet-triplet
splitting, coupling to donors,
and 4-electron trick

• Enhanced latching readout

0.5

• Singlet-triplet qubit
(hyperfine-driven rotations)
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

■ Donor-Dot system

■ Valley splitting, singlet-triplet
splitting, coupling to donors,
and 4-electron trick

■ Enhanced latching readout

■ Singlet-triplet qubit
(hyperfine-driven rotations)
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

The "gated wire" device

A

28Si

Filled-shell valley configuration
conduction

bandi
oxide

effective (2,0)-(1 , 1 )

[P. Harvey-Collard ... Nat. Commun. 8, 1029 (2017)]
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The singlet-triplet (ST) qubit

quantum
dot

(2,0)

(1,0)

VI_

Readout and control
Pauli spin blockade (PSB)

(1,1)T0

VR

(2,0)
VS

#

I.

ISI = l "#i - #"i

#"i

[ST qubit theory:] Taylor, J. M. ... Phys. Rev. B 76, 035315 (2007).
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■ Valley splitting, singlet-triplet
splitting, coupling to donors,
and 4-electron trick

■ Enhanced latching readout

■ Singlet-triplet qubit
(hyperfine-driven rotations)

Part 1:
Donor-dot system and
related topics

operation
layer

memory
layer



Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

Valley splitting in Si

Filled-shell valley configuration

gate (n+ poly-Si)

oxide (35 nm Si02)

Valley degeneracy is lifted because of the
strong confinement at the Si/Si02 interface [1]

(a) Quantum dots
•
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A  Splitting

CB minimum ...'  4-fold 11/4... 4

6-fold 
.

:
degenerate •..

.

E

...
.• r
• • -'
2-fold **

Jopants

Bulk OD

CB minimum .
  • 2-fold••• .

6-fold •.%.
•... ls (T2) 1

Ev 2generate .. •
.. 3-fold

% 1s(A1)
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-*-1
Valley

Splitting

[1] Zwanenburg, F. A. ... Rev. Mod. Phys. 85, 961 (2013).
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Small valley splitting is a problem
Spin blockade window can be
unpractically small

Charge
stability
diagram

Pauli spin blockade (PSB)

(2,0)S

•

V right

(1,1)7-0

VS

lillivilli,

Valleys can have different g-factors
[1, 2]

a 1.6

1.2 -

,,0
a 0.8 -
,,

0.4 -

1 1 l l l 1
12.880 12.884 12.888 12.892

Pt
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[1] Eng, K. ... Science Advances 1, e1500214 (2015).
[2] Kawakami, E. ... Nat Nano 9, 666-670 (2014).
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Valley splitting is tunable in MOS

Reproduced in
our devices [1].

Theoretical
understanding
[1].

.1101111114.----s.

Our work (SNL)

We find consistently large (>60 peV)
and tunable (60 to >250 peV) valley
splittings in our SNL devices.

[1] Gamble, J. K., Harvey-Collard, P. ... App. Phys.
Lett. 109, 253101 (2016).

41111ke\"'

— Theory
• Experiment
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1 .8 1 .9 2 0

Yang (UNSW)
15 [Original work:]

Yang, C. H. ...
10 >
2 Nat. Commun. 4,

5 I-LN
2069 (2013).
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Valley splitting in Si

Filled-shell valley configuration

oxide (35 nm Si02)

donors

Strong tunnel coupling to donor

Low electric field (Vp)

1
Limits the valley splitting!

1 1

- r Theory
• Experiment
__----------

1
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

Tuning the ST splitting via shell engineering

Give up? Or play some tricks!

• Spin singlets have a symmetric valley-orbit
wavefunction.

• Trick: fill the lowest valley with a singlet. Then
forget about it!

o2,v2  

2 0 \E -E o2,v1  , ^ orb VS

V right

ol ,v2

ol ,v1 0

Eorb

lEvs

4-electron trick

• Proposed that this trick can

• Circumvent small ST splitting

• Change QD size to adjust tunnel coupling to
donors

• Introduced in 2015 (arXiv) and [Harvey-
Collard, P. ... Nat. Commun. 8, 1029 (2017).]

• Now used by other groups (HRL, U Wisc, ...)



Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard
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• Valley splitting, singlet-triplet
splitting, coupling to donors,
and 4-electron trick

• Enhanced latching readout

• Singlet-triplet qubit
(hyperfine-driven rotat.
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Issues with spin readouts

Example: Charge sensor not necessarily aligned with sensed dipole

Charge
stability
diagram

Pauli spin blockade (PSB)

(2,0)S

(2,0) (2,1)

(1,0)

VS

V right

(1,1) To
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Readout concept (illustrated)

SET charge sensor

LDOC
QD  

VAG 14) (lead 1
4

Vcip

(QD,D)

(2,0)

spin blockade
region

0
0

(1,0)

lea

enhancement
region

\

wnhancement region

\

(2,1)

(2,0)S 4 (2,0)

QD D

tot = 3

t t = 2

[P. Harvey-Collard ... Phys. Rev. X 8, 021046 (2018)]
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Readout concept (illustrated)

SET charge sensor

LDOC
QD  

VAG 14) (lead 1
4

Vcip

(QD,D)

(2,0)

spin blockade
region

0
0

(1,0)

lea

enhancement
region

\

wnhancement region

\

(2,1)

(1,1)T0 4 (2,1)

(2,0)S 4 (2,0)

QD D

t Ntot = 3

1 Ntot — 2

[P. Harvey-Collard ... Phys. Rev. X 8, 021046 (2018)]
19
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Enhanced Latching Readout enhances the signal-
to-noise ratio

c
10o

spin blockade

- singlet
— triplet

0 200 400 600 800

Sensor current (pA)

d 
10
0

cti

1 0 -() 
CD

_CD

2-0 - 
10

4

"direct" ELR

450

singlet
triplet

0 200 400 600 800

Sensor current (pA)

Noise is the same.

[Inspired from:] S. A. Studenikin ... App. Phys. Lett. 101, 233101 (2012).
[Other work:] Mason, J. D. ... Phys. Rev. B 92, 125434 (2015).

Petersson, K. D. ... Phys. Rev. Lett. 105, 246804 (2010).

Relaxes layout
constraints

SET charge sensor

LDOC 1
)

QD  

iv (lead IVAG

VCP

[1] P. Harvey-Collard ... Phys.
Rev. X 8, 021046 (2018).

Enhances lifetime [1]

99.91% avg. charge readout fidelity [1] )(4
99.86% avg. spin readout fidelity [1]

At9

//
Still record to date?

co.

20



Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

Enhanced Latching Readout (ELR) Comparison

Comparison of electron
readouts

Spin 1/2 Singlet-
triplet

This work
(ELR)

Mechanism Tunneling
(stochastic)

Spin blockade
(deterministic)

Spin blockade
(deterministic)

Speed Slow Fast Fast

Signal 1 e —0.2 e 1 e

Lifetime Good,
but long waits

-Ok (Si),
Bad (GaAs)

Good

If you have any singlet-triplet
system, this can work!
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• Valley splitting, singlet-triplet
splitting, coupling to donors,
and 4-electron trick

• Enhanced latching readout

• Singlet-triplet qubit
(hyperfine-driven rotations)
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

The MAJIQ system
MOS (M) hyperfine (A) exchange (J) nuclear spin (l) qubit (Q)

oxide

28
Si 

31
P

gate

oxide

28
Si

31P El

i
> conduction

band

> conduction
band

0-1 AS • i ly) = -
A
S

2

For electron on donor:

A = (g413/h)S . Bext AS • I

Singlet-Triplet Hamiltonian:

hsT = J(E)6-, I ABZ(E)erx

[P. Harvey-Collard ... Nat. Commun. 8, 1029 (2017)] 2 3



Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

State manipulation
Singlet-triplet rotations driven by a single 31 P nucleus

0 5J .6,Ez
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[P. Harvey-Collard ... Nat. Commun. 8, 1029 (2017)] 2 4
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Detuning dependence of exchange
interaction

c

100

CD 80
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2 20
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[P. Harvey-Collard ... Nat. Commun. 8, 1029 (2017)] 25
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

Coherence time and charge noise

= 868 µeV

b

0.5

= 0.96 ± 0.31 µs

= 635 µeV

0 0.5
Manipulation time (ps)

Quantitative measure
of charge noise in
Si-MOS

Reference

Material

2o-c (peV)

1

1.5

0.5

0
400 600 800 1000

Detuning (peV)

I#

i si

lroi

J J(E + noise)

Petersson et al. Shi et al. Eng et al. This work Jock et al.

GaAs/AIGaAs Si/SiGe Si/SiGe Si (MOS) Si (MOS)

7.4

kBTe (peV) 6.9

[1] P. Harvey-Collard ... Nat. Commun. 8, 1029 (2017)
[See alsol Rudolph, M. ... 2016 IEEE IEDM, 34.1.1-34.1.4 (2016).

R. M. Jock ... Nat. Commun. 9, 1768 (2018).

10 9.2 18 4

12 6.9 — 8.6 18 13
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Perspectives
E
x
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1010
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Modern implementation of Kane's original vision

100 200

onor Separation (A)

300

[B. Kane ...
Nature 393,
133-137
(1998)]

,-

Over 19 years of QD-D schemes!

Future work:
- High-fidelity qubit operation (AC, etc.)
- Strong hyperfine donors species
- Two-MAJIQ coupling
- Nuclear spin addressing

cell 1

gate

00'

cell 2 r 
oxide

operatio
layer

capacitance,
, exc,-, - 'nger

memoryl I 
r 1

layer I 
1/2 1

I I
\  / • 

[P. Harvey-Collard ... Nat. Commun. 8, 1029 (2017)]
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• Universal control using spin-
orbit interaction

• Implications of the spin-orbit
interaction for singlet-triplet
qubits in silicon

Part 2:
Spin-orbit interaction in
silicon dots
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C Energy

v+

Spin-orbit interaction in silicon
Other work

Spin relaxation hot-spot in MOS
I 4

13) C. H. Yang ... Nat. Commun. 4, 2069 (2013).
X. Hao ... Nat. Commun. 5, 3860 (2014).

Broken symmetry at Si/material interface:
U. Rössler ... Solid State Comm. 121, 313 (2002).
L. E. Golub ... Phys. Rev. B 69, 115333 (2004).
M. Prada ... New J. of Phys. 13, 013009 (2011).

Spin resonance frequency in MOS
(a)
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O

1.992 q ,
ea
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Confinement gate voltage, Vc (V)

M. Veldhorst ... Phys. Rev. B
92, 201401 (2015).
R. Ferdous ... Phys. Rev. B
97, 241401 (2018).

Spin resonance frequency anisotropy Spin-orbit-driven spin resonance in a
in Si/SiGe
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R. Ferdous npj Quantum
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Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

Simple CMOS-compatible qubit
Pure CMOS design [1, 2, 3]

Isotopically-enriched silicon 28

gate
(n+ poly-Si)

ohmic
contact

2D electron gas QD 28Si epilayer

SET charge sensor

EDO
S QD C QD

1 leac
—i— —i— —i—
VBS VBL VBC

Split Wire Accumulation
Gate (SWAG)

First* spin-orbit-driven** e- qubit
in silicon.
*.

**.

See also [Corna et al. (2018)]
Excluding artificial spin-orbit.

[1] P. Harvey-Collard et al. All-electrical
universal control of a double quantum dot
qubit in silicon MOS. ln 2017 IEEE IEDM

HBT (2017).

[2] R. M. Jock, N. T. Jacobson, P. Harvey-
Collard et al. "A silicon metal-oxide-
semiconductor electron spin-orbit qubit," Nat.
Commun. 9, 1768 (2018).

[3] P. Harvey-Collard et al., "Implications of
the spin-orbit interaction for singlet-triplet
qubits in silicon," arXiv:1808.07378 (2018).
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• Universal control using spin-
orbit interaction

• Implications of the spin-orbit
interaction for singlet-triplet
qubits in silicon

Part 2:
Spin-orbit interaction in
silicon dots

gate ..,01
I id /

IT) ® Bext
IT)
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AEZ = (AMP BB ext
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Initializing the qubit:
Slow/Rapid Adiabatic Passage (SAP/RAP)

SAP: Slow Adiabatic Passage
Adiabatically with respect to
both spin and charge.

-5) < > N)
7-0) <> kVr>

RAP: Rapid Adiabatic
Passage
Adiabatically with respect to
charge.
Diabaticallyth >rrpect to
spin.

To)   To)

(2,0) CIO)

-5

P(T)
0 0.5
Im 

0 2 4
t 
mani.p 

(ps)

[P. Harvey-Collard ... In 2017 IEEE IEDM (2017)] 32
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DC control Zeeman rotations

75% visibility
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[P. Harvey-Collard ... In 2017 IEEE IEDM (2017)]
33



Spin qubits made of quantum dots and donors in silicon Patrick Harvey-Collard

DC control Exchange rotations

Pulse

J AEz

II
AS-

Detuning dependence

P(T)

0 0.5

0
2.945 2.95 2.955

VBC detuning (V)

1

65% visibility

[P. Harvey-Collard ... In 2017 IEEE IEDM (2017)] 34
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AC control of the singlet-triplet qubit
AC-controlled rotations [1, 2, 3]
Access any 1 qubit state

J AEz

Sr
SPS)

(2,0)1(1,1) 
detuning

IT T1 r

2

[1] Klauser, D. ... Phys. Rev. B 73, 205302 (2006).
[2] Shulman, M. D. ... Nat Commun 5, 233101 (2014).
[3] P. Harvey-Collard ... In 2017 IEEE IEDM (2017).
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• Universal control using spin-
orbit interaction

• Implications of the spin-orbit
interaction for singlet-triplet
qubits in silicon

Part 2:
Spin-orbit interaction in
silicon dots

gate ..,01
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Spin-orbit interaction in silicon MOS
Interface mechanism

Interface mechanism due to broken crystal symmetry*

, Si/ Si02 interface

VVV

‘t cE

N

a
D

Wavefunct ion momentum P

---- P evaluated at the interface

• .a .fiali

%. .141%
Itr4 

.

RI% Tp...

...
  , ■ w3.pwitimpil..0-4-.0-.111-41-4-41.mlrol.olir-ii . - •

. .

  , .a M *A • i -n i -I - -

  ,,,,,,,,, . . . . . . .

B. Woken .orystal symmetry allows local .
. spirFprbit terms

—3!) -2 D - 1D a 10

x (nm)-
2 0 30 40

* Different from
E-field-induced
broken symmetry
in 2DEGs
[L. E. Golub ...
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Spin-orbit interaction in silicon MOS
Intravalley effect
g is renormalized

in each dot

oxide

g-tensor
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0

0 0 gll

[R. M. Jock ... Nat. Commun. 9, 1768 (2018)]
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Spin-orbit interaction in silicon MOS
Intervalley effect

Interaction with excited
valley state

Ag

T r il (g* + 
1 F 1

tl = r

1 r l

[P. Harvey-Collard ... arXiv:1808.07378 (2018)]

Non-linear effect

FFT power (a. u.) 
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4

AE7

-
intravalley
AE7 = AgAB Bext

Second-order intervalley
mechanism*

* Strength consistent with [C. H. Yang ... Nat.
Commun. 4, 2069 (2013)] and [X. Hao ...
Nat. Commun. 5, 3860 (2014)]
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Spin-orbit interaction in silicon MOS
Tunneling + spin-flip mechanism

(2,0)S (1,1)T
detuning

1 detuning
(2,0). OH)

 >

(1,1)S

 >
150

0 data

- conf. int.

fit

0.1

B ext (T)
[Method:] J. M. Nichol ... Nat Commun 6, 7682 (2015).

[1] P. Harvey-Collard ... arXiv:1808.07378 (2018).

0.2

Spin-orbit length [1]:

Result: _Qs° sing) = 113 ± 22 neV Bext /1 ri 00]

/150 = tcd/nsc\i2 - 1 pm
Bulk Si: 20 pm!

Bulk GaAs: 1.1 pm!

Affects dynamic nuclear polarization (DNP)

Hyperfine interaction [1]:
Find bound: ŒHF < 5 neV

Expect: a
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How should I mount my
device?

3 spin-orbit effects
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5- To effects caused by
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• Static (1,1)

• intravalley, intervalley

• momentum P :
Bext via cyclotron orbit

• component of Bs() II B„t

Ag vanishes for
out-of-plane B-field

BSC), Rashba [010]
for P along

BSC), Dresselhaus

[100]

5- T effect caused by
AB1

• Dynamic (2,0) 4- (1,1)

• tunneling + spin-flip

• momentum P :
double quantum dot axis

• component of Bs() 1 Bext

AsT persists for
out-of-plane B-field

[P. Harvey-Collard ... arXiv:1808.07378 (2018)]
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Conclusion & Summary
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