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Abstract

The research described in this report was performed as part of the Sandia National
Laboratories Laboratory Directed Research and Development (LDRD) program
throughout Fiscal Years 2015 and 2016.

This LDRD project was conceived to address an issue that can present challenges for
acquisition programs and ultimately contribute to delay or even cancellation:
inconsistent or unachievable requirements. The result of this work produced ultra-
high dimensional optimization algorithm enhancements (for problems with greater
than 30 objective functions) and a new analytic capability called Advanced
Requirements Integration and Exploration System (ARIES). ARIES provides
developers of system requirements with analytical support for integrating
requirements from different disciplines into a set of simultaneously achievable
requirements by providing real-time feedback regarding the interactions between
requirements. This feedback facilitates discussions to reconcile conflicts between
requirements early in a program. ARIES was enabled by applying the novel ultra-
high dimensional genetic algorithm optimization techniques that were developed
during this research project.
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1. PROBLEM OVERVIEW

Section 1 of this report outlines the problem being addressed, the motivation for it, and the
general approach taken. In Section 2, the optimization challenges associated with this problem
are detailed along with the novel algorithmic advances that address these issues. Section 3
describes the analytic capability that was developed to address the motivating problem, which
was enabled by the algorithmic innovations. Lastly, in Section 4 transition opportunities and
areas for future research are discussed.

1.1. Problem Description and Motivation

Early in the lifecycle of a government acquisition program (e.g., a new tank system, fighter jet,
etc.), a highly complex and interdependent set of requirements is developed. These requirements
define what the system being developed must do, typically with threshold (minimum desired)
and objective (ideally desired) values for each requirement. For example, a military ground
system’s speed requirement might specify a 50 miles per hour (MPH) threshold level and a 75
MPH objective level — meaning that a prototype system must at least achieve 50 and ideally be
able to travel at 75 MPH. These requirements are usually derived from user needs or current
capability gaps; each requirement possesses strong rationale and analytical backing for its choice
of the threshold and objective values.

A problem arises, however, when subsets of requirements (such as mobility or survivability
requirements for a combat vehicle) are developed by independent teams of Subject Matter
Experts (SMEs) who have a thorough understanding of their area of expertise, but lack an
analytical methodology for ensuring their requirements interact appropriately with all other
requirements. Thus, when all the individual requirements are integrated into a unified set,
inconsistencies (such as requirement A cannot be met at the same time as requirement B) or
unaffordable scenarios may arise. If these issues are not addressed early, they can present
challenges to a program later in its lifecycle and ultimately contribute to programs being
cancelled or delayed as the inconsistencies become known.

Traditionally, this requirements integration process is performed manually through negotiations
between the relevant program stakeholders without analytic understanding of interactions. A
capability to support these negotiations would reduce the risk of inconsistent or unaffordable sets
of requirements persisting beyond the early stages of a program — guiding requirement threshold
and objective levels towards a simultaneously achievable set. This capability would also help
bring the analytic backing that individual requirements have to the integration negotiation
process — providing defendable rationale to decisions that are made.

This requirements integration issue became starkly evident via repeated application of a related
capability known as the Whole System Trades Analysis Tool (WSTAT). Developed by Sandia
National Laboratories in conjunction with the United States (US) Army, WSTAT is a systems
engineering tradeoff analysis tool that has informed numerous military acquisition programs —
such as ground combat vehicles, unmanned robotic systems, aquatic transport vessels, and base
camps. Broadly stated, WSTAT operates by decomposing a system into its constituent parts,
mixing and matching the combination of these parts, and producing a spectrum of combinations
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that best balance multiple competing design objectives. Extensive experience applying WSTAT
to various programs led to the discovery of the requirements integration problem described
above. While each program had unique reasons that caused this situation to arise (such as
immaturity of technologies or a combination of requirements driving towards overly-expensive
designs), the general problem was always present — the full set of requirements was not
simultaneously feasible.

These observations led to the idea that an optimization approach considering both technological
and programmatic constraints could be developed to facilitate integrating desired system
capabilities into a simultaneously achievable set of requirements. Developing an analytic
capability to inform how requirements should be set while a program is still early in its lifecycle
would maximize the likelihood of successful fielding — making that the primary goal for this
Laboratory Directed Research and Development (LDRD) project. The culmination of this
research was the Advanced Requirements Integration and Exploration System (ARIES)
capability — a unique combination of novel optimization techniques and collaborative decision
support user interfaces that provides program stakeholders with a new analytic methodology for
ensuring proper requirements integration from the outset of a project.

1.2. General Approach and Appropriate Optimization Technique

The goal of the ARIES capability is to guide stakeholders towards a single, optimal,
simultaneously feasible set of requirements values (i.e., thresholds and objectives) for their
program. Since each stakeholder will have a unique notion about which requirements are more
important than others, ARIES must represent al/l possible choices of optimal requirements levels
in an unbiased manner. In other words, ARIES must capture the full requirements trade space
(those requirements values that best balance the potentially competing requirements metrics such
as top speed, protection level, maneuverability, lethality level, etc.) so that an impartial,
analytical examination of the trade space can be performed. In this section, we outline the
general approach for capturing the full requirements trade space, as well as our rationale for the
choice of underlying optimization methodology.

To start, it is fundamentally vital that every requirements solution presented by ARIES be
simultaneously feasible. To ensure this feasibility, we borrow from the WSTAT framework with
this key insight: the metrics measured for any buildable combination of subsystems implicitly
represent a feasible set of requirements values. In other words, by optimizing over buildable
combinations of technologies that optimally balance the requirements metrics, we also inherently
optimize over simultaneously feasible requirements levels. Thus, emerging from this insight we
can formulate the following necessities for the optimization technique. First, the technique must
be able to address multi-objective optimization, since each requirement metric can be considered
a unique objective function in which we desire good solutions in all metrics simultaneously.
Second, the technique should be able to handle discrete decision variables (i.e., the choices of
technology for each part combined into the system configuration). Third, the technique should
handle any general requirements metric including non-linear and even non-closed-form
calculations (since complex real-world system metrics are often themselves complicated
derivations).



With these three necessities in mind, we chose evolutionary algorithms — in particular, a genetic
algorithm (GA) — to perform the combinatorial requirements trade space optimization to find
solutions that optimally balance a relatively large set of requirements (our system example
described further in Section 1.3 has 37 unique requirements metrics). To justify this choice of
technique, we spend the remainder of this section comparing GAs to another popular approach
known as mixed-integer linear programming (MILP) — briefly presenting descriptions of these
techniques and the basis for choosing a GA over a MILP in the context of the requirements
integration problem.

Broadly speaking, GAs are meta-heuristics that mimic the biological process of evolution. A
population of individuals or chromosomes evolve over a series of generations, during which the
individuals mate and produce offspring. The individuals contain decision variables that describe
a possible solution to the problem that is being optimized. In our example, an individual’s
decision variables describe the technologies that comprise a combat vehicle: engine,
transmission, armor, weaponry, etc. As the GA progresses, offspring are created that differ from
their parents by means of mutation (random alteration of one or more decision variables) and
crossover (random combination of two or more parents’ decision variables). Only the most “fit”
offspring survive into future generations, and measures of fitness can vary by approach (selection
methods for surviving solutions are discussed in Section 2). In this manner, the population
evolves over the generations and approaches the best objective function value(s) — in our case,
the combinations of subsystems that achieve good values in the requirements metrics. Since
GAs carry forward an improving population of solutions, they naturally address multi-objective
optimization which entails a spectrum of many different answers that balance the various
objectives. Also, GAs place no restrictions on the structure of underlying metrics used to

evaluate solutions; thus non-linear and even non-closed-form calculations can be readily
handled.

By contrast, MILPs, perform a closed-form search procedure to produce a feasible,
mathematically-verifiable solution to a single linear objective function (or a best-found solution
with an associated optimality gap). In geometric terms, a MILP finds the largest (or smallest)
point within a polyhedron in the direction defined by the linear objective function, where the
polyhedron is formed by the intersection of linear inequalities that define the problem
constraints. Technically speaking, the search space is the volume within the polyhedron
intersected with the integrality restrictions of the decision variables. The search procedure
(typically Branch and Bound, though many variations on this approach exist in practice)
explicitly relies on the linearity of the objective function and bounding constraints. Thus, unless
some reformulation of nonlinearities can be devised, the MILP approach does not naturally
address the types of constraints and objectives typically seen in the requirements integration
problem. It should also be noted that multiple objectives can be addressed using MILPs, but in
practice this involves aggregating the objectives with a weighted sum, and sequentially solving
multiple optimization problems — one for each unique weighting of the objectives.

Table 1 shows a summary comparison of the two techniques with potential pros and cons of
each. GAs more naturally address non-linear objectives and multi-objective optimization — two
qualities that are necessary for the requirements integration problem. Both GAs and MILPs can
address the discrete variables used to define systems configurations. Thus, in total, the genetic-



algorithm technique is favored. For this project, the John Eddy Genetic Algorithm (JEGA),
developed and widely applied by Sandia National Laboratories, was used as the baseline GA
upon which testing and improvements were made.

Table 1. Characteristics of GAs and MILPs, two possible optimization techniques for
determining the optimal requirements space (bold indicates a more desirable
characteristic)

Characteristic GA MILP
Functional form of Linear, non-linear, non- Must be linear (non-linear can
objectives and constraints closed form sometimes be accommodated

via reformulations)

Number of objectives Typically up to ~5 1 objective (2-3 can be
handled by sequentially
solving the problem under
weighted sums of the
objectives)

Certificate of optimality None Optimality gap

Variable types (continuous, Any, though best for binary Any

binary, integer) or small integer

Parallel evaluations Yes (though domination Yes (though Branch and
check can be a bottleneck) Bound syncing can be a

bottleneck)

1.3. Example Application

To test the novel capabilities investigated in this LDRD, an exemplar case study needed to be
selected. The US Army’s Ground Combat Vehicle (GCV) acquisition program provided an ideal
test case for several reasons. The GCV program was cancelled in early 2014, so it was not an
active program during this research project (providing a stable set of requirements), but was
recent enough that the target audience (requirements developers) would be familiar with the
program. Second, the GCV program was cancelled at least in part because it had become too
expensive to meet all the requirements for the system — typifying the problem being addressed in
this LDRD. Finally, Sandia National Laboratories had previously provided WSTAT analytic
support to the GCV program and therefore was familiar with the system and associated
requirements metrics.



2. OPTIMIZATION CHALLENGES AND ADVANCES

In this section, we discuss the unique mathematical challenges associated with optimization via
evolutionary metaheuristics in the context of requirements trade space analysis. As mentioned in
Section 1.2, GAs exhibit several beneficial properties in that they naturally address discrete
decision variables under multiple non-linear objective functions and constraints — inherent
properties of the requirements trade space. Despite these benefits, however, difficulties arise
when addressing problems with more than about five objective functions. The remainder of this
section outlines the unavoidable need for ultra-high dimensional optimization (greater than 30
objective functions) as well as the novel mitigations taken to enable this capability.

21. Problems with Aggregation

While it may seem natural at first to think of requirements as constraints on the design of a
system, it is more helpful to recognize that all requirements have an inherent direction of
“goodness” and can instead be thought of as design objectives. For example, in the context of
military systems, a higher top speed, a higher armor score, and a lower purchase price would be
illustrations of improving directionality of mobility, protection, and cost requirements.
Traditionally, requirements are abilities that a system must achieve to be valuable. Recognizing
that there is significant subjectivity in the value of a system, one can argue that a viable solution
that meets “depressed” requirements is better than an unviable program with unachievable
requirements. The design challenge, then, is to make all requirements as good as simultaneously
possible. Thus, when we refer to the “requirements trade space,” we are referring to the set of
Pareto optimal threshold levels for all requirements such that one threshold cannot be improved
without also making one or more other thresholds worse. It is then a matter of negotiation to
decide exactly which set of thresholds to use for the program.

The problem that quickly arises from this approach is that typical military systems have many
dozens of independent requirements; capturing the Pareto optimal requirements trade space in
this many objectives is still an open problem in the optimization literature. A common method
for dealing with this many objective functions focuses on reducing their number via aggregation
(i.e., weighted summation) into a smaller, more manageable set. Philosophically, the
aggregation approach can be thought of as incentivizing compromise — often stated as a variation
of “a small improvement in one objective at a large expense to another is unacceptable.”
Unfortunately, as will be shown, a compromise-based approach can severely obfuscate the
tradeoffs between individual requirements — something that cannot happen if our capability is to
be of use to real-world requirements developers.

To explicitly see the problem with objective function aggregation, even in a small number of
objectives, consider the following simple numerical experiment. First, randomly generate k
points inside an n-dimensional unit hypercube, with each dimension representing an objective
whose direction of improvement is towards larger values. Furthermore, when generating these
points, enforce that for each pair of dimensions, the generated points must fall beneath a pairwise
“tradeoff limit” indicated by the dashed curves in Figure 1 (where panel one exhibits a “lax”
tradeoff between dimensions 1 and 2 while panel two exhibits a “strict” tradeoff between
dimensions 1 and 3). This mimics empirically-observed phenomena where physical laws and
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technology availability limit simultaneous goodness of a solution in two objectives. Each point
in Figure 1 represents a realization of possible threshold levels in # requirements, and the goal is
to capture those points that represent the best possible tradeoff in all the requirements (shown by
the blue lines).
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Figure 1. k=1000 random points in n=4 dimensions satisfying pairwise tradeoff limits

However, suppose that instead of performing optimization in the original » objectives, these
dimensions are instead aggregated via simple addition and Pareto solutions are selected from the
resulting lower-dimensional space. For example, Figure 2 displays the 1000 points from Figure
1 where the first two and the last two dimensions have been aggregated to reduce the space from
four-dimensional (4D) down to two-dimensional (2D). While the 2D space may be more
amenable to traditional multi-objective optimization techniques, the aggregate space is not
guaranteed to preserve the tradeoffs that exist in the original 4D space.
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Figure 2. Pareto optimal solutions (red) in the aggregate 2D solution space

This loss of tradeoff information can be seen by comparing the red Pareto optimal solutions from
the aggregated space in Figure 2 to these same points remapped back to the original 4D space as
shown in Figure 3. Note that in some cases (i.e., the middle panels) the red points selected from
the aggregated Pareto provide a passable representation of the pairwise tradeoff (the blue line).
In general, however, the aggregated Pareto solutions do not capture a representation of the
pairwise tradeoff. It follows that if the simplest 2D interactions are not generally well
represented, then neither are higher-order interactions between three or more dimensions. For
this reason, objective function aggregation is unfortunately not a viable means of acquiring the
complex interactions of the requirements trade space; instead we must understand and address
the challenges of optimization in 30 or more dimensions.
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Figure 3. Aggregated Pareto points (red) do not represent pairwise tradeoffs (blue)

2.2. Challenges with Ultra-High Dimensional Optimization

Optimization in very many dimensions is rarely attempted in the current literature.! Most often,
applications are amenable to the compromise-based philosophy mentioned above and do not
explicitly require optimization that treats each metric as an independent objective function. In
addition, it is very difficult to visualize and derive insight from very high-dimensional results (a
challenge treated in more detail in Section 3). Thus, most operations researchers address these
applications via methods that aggregate multiple metrics into one, or a small handful, of
objectives. Furthermore, the difficulties with many-objective optimization are well known and
while it is an active area of research (as evidenced in recent papers such as (Deb 2014)) there are
not general solutions to these difficulties. One of the primary technical reasons for avoiding
ultra-high dimensionality is that the traditional Pareto dominance criteria loses its ability to
differentiate good solutions from bad. This is not to say that all solutions are equally good in a
many objective problem, but rather, the probability that a solution is dominated by its peers
(worse than its peers in all objectives) in a finite population becomes vanishingly small. In other
words, as the number of objectives n grows, so too does the probability that a fixed number of
solutions will all be relatively non-dominating to each other (each solution is likely to be equal or
better in at least one objective than the other solutions).

This phenomenon can be demonstrated by generating k& random solution vectors within a

hypercube of dimension n, for several values of n, and calculating the percentage of non-
dominated solutions, as shown in Figure 4 which was adapted from (Ishibuchi 2008). In this
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example with k = 200 solution vectors, for n > 14 nearly all candidate solutions are non-
dominated.

g

80

2 4 6 8 101214 16 18 20
Number of Objectives (n)

Percentage of Non-Dominated Vectors (%)

Figure 4. Average percentage of non-dominated vectors among k=200 vectors randomly
generated in the n-dimensional unit hypercube [0,1]" (Ishibuchi 2008)

This situation occurs because the volume of the solution space grows much faster with n than the
volume of any given solution’s domination cone, so the probability of one solution dominating
another solution shrinks drastically.

There are several cascading consequences of having most, if not all, solutions in a finite
population being non-dominated. First, if Pareto-dominance is the sole criteria for culling the
population size for a given GA, then this could lead to unbounded population growth beyond the
fixed limits of system memory or human interpretability (i.e., there would be no solutions to
discard). On the other hand, if the population size is bounded, Pareto dominance is non-
discriminating and some other selection criteria needs to be carefully devised to encourage
populations to both improve as the generations progress and eventually achieve convergence.

Existing many-objective methods introduce some other selection pressure to mitigate these
issues, but they often incentivize compromise, whether explicitly (as methods based on relations
prefer or favor (Sulflow 2007, Drechsler 2001), which score solutions higher if they are better in
more objectives) or implicitly, such as with aggregation methods discussed in Section 2.1.

In addressing these challenges, several guiding principles/goals are considered. First is to
efficiently characterize as much of the full spectrum of tradeoff information as possible. This
means abandoning the traditional philosophy of compromise in the process of selecting which
solutions to keep. Showing only compromises over-represents the “knee” of the tradeoff while
providing little or even misleading tradeoff information about the full-dimensional trade space
(as explained in Section 2.1). Instead, we desire information about the extremes of the n-
dimensional trade space as well as the “knee” — and everything in between. Another goal is to
avoid unnatural clumps (overrepresentation of an area) or holes (underrepresentation of an area)
in the trade space depiction; we want the solutions presented to the user to be well-spaced from
one another to give the fairest, most-representative information about the full spectrum of
requirements interactions. These concepts are illustrated in Figure 5.
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Figure 5. Comparison of compromise-based (L) and tradeoff-focused (R) philosophies

Understanding that the full richness of the trade space cannot possibly be represented, a solution
set that includes each dimension’s optimum and a well-spaced subset of points in between those
dimensional optima is sought, giving significant insight into tradeoffs despite a limited
population size. This philosophy is rather distinct from multi-objective optimization in the
typical sense, in that we do not seek to find the highest-performing solutions, but the most
diverse subset of non-dominated points.

The process that was settled upon over the course of this research is as follows. First, find
extremal points via one-dimensional (1D) optimization for each of the objectives, and create an
initial population from these extremal points. Next, run a multi-objective optimization heuristic,
starting from this initial population, that 1) preserves extremes, 2) incentivizes/preserves
diversity, and 3) stabilizes over time.

There were several research challenges in developing this process and particularly in modifying
a GA to have the desired properties. First, it became apparent that there could be many alternate
optima for a given single dimension, so we would need to determine a method for choosing
which of these optima to preserve. Secondly, we would need to figure out sow to incentivize
diversity as the population evolved. The following subsections describe in more detail the steps
taken to address these issues and why.

2.2.1. Seeding with Results of One-Dimensional Optimizations

Finding solutions that are optimal or “near-optimal” for each dimension is trivial within a multi-
objective optimization heuristic — simply run it with only one dimension at a time for each
dimension 1 through n. The points selected by this process then become the initial population
for the multi-objective GA.> Determining the optima for each dimension up front has several
benefits. First, it provides a significant amount of initial diversity since the “genes” that are
optimal for one dimension are likely to be very different from those that are optimal for another.
Secondly, knowing (approximately) the best possible value for each objective has analytic value
of its own; it bounds expectations and, as discussed later, it can be used in discussions with
SMEs for that functional area to vet the input data and evaluation method for that dimension.
Finally, it guarantees that at least the most basic tradeoff information has been captured; for any
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given dimension we at least know the best possible value for that dimension, and have many
solutions that are suboptimal in that dimension because they are optimal in others. This provides
a crude understanding of tradeoffs: which dimensions must “lose” for another to “win”. At this
point we have not explicitly concerned ourselves with the possibility of multiple optima for any
given objective; that becomes important in a later step.

Once the initial population is created using the 1D optima, there are two major changes made to
selection criteria within the GA to incentivize diversity.

2.2.2. Extrema Preservation

The previous section overviews the acquisition of 1D optimal values for each dimension and
details how they are used as seed solutions for the full-dimensional requirements trade space
optimization. It would be 1) a poor use of computational effort and 2) a betrayal of the tradeoft-
focused philosophy if these extrema solutions were quickly forgotten during the full-dimensional
evolution. Hence, we need a mechanism to ensure that the GA always preserves dimensional
extremes from generation to generation — ensuring that 1D tradeoff information is not lost (and
so that incremental improvements on the 1D extremes might be acquired).

At the onset of this research, as is demonstrated in the top panel of Figure 6, these extremes were
not preserved in the baseline implementation of the JEGA algorithm. To see this, note that each
of the 37 lines in the figure represents the best value of that corresponding dimension from
generation to generation. Since the lines are generally non-monotonic — increasing and
decreasing chaotically from generation to generation — this implies that the evolution is
continually discovering and then forgetting the best solutions in each individual dimension.

To address this issue, we employ the following strategy to ensure certain solutions cannot be
culled from the population. During each generation, for each dimension i € {1, ..., n}, we select
the solutions(s) that have the best score in that dimension. Of these solutions that are best in i,
we then preserve one point for each dimension j # i that provides the best score for dimension ;.
This hierarchical preservation mechanism will keep at most n(n — 1) points, which is typically
(for n = 40) much smaller than the maximum population size. This approach guarantees that we
capture some of the most basic 2D tradeoff information — in essence asking “given that we are
optimal in one dimension, how well can we still do in another dimension?” As can be seen in the
bottom panel of Figure 6, the lines for each dimension are monotonically improving from
generation to generation with this new approach — proving that the best solutions for each
individual dimension are not being lost, and indeed are being incrementally improved upon in
many cases.
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Figure 6. Trace of dimensional optima without (top) and with (bottom) extrema
preservation

2.2.3. Space-Filling Niche Operator

Finally, without Pareto dominance as a driving selection pressure (and with inferior/infeasible
points trivially removed), we adopt a new selection approach whose goal is to measure and dis-
incentivize crowding. This is the purpose of a niche operator. We found that the existing
Maximum Designs niche operator within JEGA (intended to limit the population size to stay
within computer memory limitations, with selection based on a combination of domination and
crowding scores) led to undesirable clumping behavior, which was readily apparent in 2D test
problems as demonstrated in Figure 7. In this figure, the top chart shows the progress of a 2D
Pareto frontier (black points) towards the true frontier (blue points) after 5000 generations.
Under the existing niching methodology, emergent clumping becomes apparent in the black
solutions. This is also evident in the lower graph of Figure 7, which plots a histogram of the
Euclidean distance between all points and exhibits “spikiness” in the distribution. This strongly
indicates that over-representation of some areas coupled with under-representation of others is
being observed.
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Figure 7. Emergent clumping in 2D toy problem with JEGA Maximum Designs

Upon investigation we were able to determine the cause of the problem. The Maximum Designs
niche operator functioned based on the count of solutions within a given Euclidean neighborhood
of each solution; the higher the count for a given solution, the less desirable it is to keep that
solution since this is interpreted as significant local crowding. While intuitively this seems
correct, we found that this led to an undesirable emergent property. Clumps of solutions just
small enough that their penalties allowed them to stay within the population would emerge, and
when they emerged close enough to each other, the niche operator reinforced the existing
clumped population structure. As depicted in Figure 8, solutions between clumps — which
intuitively seem desirable — actually receive worse scores than the solutions in the clumps
themselves. This leads to such solutions being removed and the clumps persisting with gaps in
between them.
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Figure 8. Solutions between emergent clumps are dis-incentivized
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While theoretically a user could calculate an appropriate neighborhood size to mitigate, though
not eliminate, this issue, it would likely be 1) difficult to determine and 2) problem-specific.
Furthermore, such a neighborhood size would likely defeat the purpose of the niche operator.
For instance, a very small neighborhood would eliminate the problem, but all solutions would be
equal in the eyes of the niche operator; without a secondary selection criterion there would be no
rationale for keeping any solutions over any others. A similar issue arises with very large
neighborhoods. In between the very large and very small, changing the neighborhood size
merely fine-tunes the size and spacing of the clumps.

To ensure a diverse, well-spaced solution set, we built a new selection heuristic. Given a
maximum number of points to keep, M, this heuristic greedily tries to maximize the Euclidean
distance (in normalized solution space) between selected points. The algorithm is summarized as
follows:

e mark at least one seed solution for preservation into the next generation,
e find the unmarked solution whose minimum distance to any marked solution is greatest,
mark this solution,
e continue the second step until M solutions are marked.
The progression of this heuristic for the first ten iterations is demonstrated on an example
solution set in Figure 9. Gray points denote solutions in the larger population that have not yet

been selected. The red point is the seed, and blue points are those that have been selected so far.
Figure 10 shows the results for the same sample problem after 200 points have been marked.

*1

*10

Figure 9. Sample progression of the space-filling heuristic
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Figure 10. Result of space-filling heuristic with 200 points selected

In our application of this heuristic, since we intend for extrema to be preserved, these extrema
are typically marked as our seed solutions. However, in general, final solution spacing quality is
largely invariant to choice of the initial seed solution(s), and the heuristic almost invariably picks
the extrema anyway due to their large distance from other points, as seen in Figure 9.

It should be noted that this example in Figure 9 and Figure 10 was chosen purely for

demonstration of the heuristic; no 2D Pareto set would have this appearance, as the vast majority
of these points would be dominated for any choice of two objectives.
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Figure 11. Improved spacing in 2D toy problem with Space-Filling Nicher

While the greedy heuristic cannot guarantee an optimally spaced set of points, it appears to work
quite well and quite efficiently. As seen in Figure 11, it completely removes the clumping issues
seen in the 2D toy problem, originally shown in Figure 7. Note that finding the #ruly optimally-
spaced set of points is itself a very difficult and expensive optimization problem. In our tests, the
heuristic achieved nearly the same diversity performance as a true optimization for small n and
small population, in a much shorter amount of time. It remained solvable for larger problems,
whereas the true optimization did not. Its complexity is 0(n?).

As shown in Figure 12 and Figure 13, some dimensions may have much less variability in their
outcomes, yet the space-filling heuristic still returns well-spaced subsets of these solutions. This
is of importance because often the variation in the Pareto set can be represented in a basis of
dimension less than n.
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Figure 12. Space-filling niche operator performance with primarily 2D variability in 3-
space

Figure 13. Space-filling niche operator performance with primarily 1D variability in 3-
space

It should be noted that there are other niche operators in the literature, many of which do not
exhibit the clumping issue observed with Maximum Designs. However, we believe the space-
filling operator to be ideally suited to our application, as well as competitive with existing
operators. For comparison, let us consider the niche/selection operators of two significant
benchmark GAs: the modified Non-dominated Sorting Genetic Algorithm (NSGA-II) (Deb
2002) and the Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler 1999). An accessible
summary of the selection processes for these two GAs can be found in (Deb 2005) but we
summarize here.
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NSGA-II uses a crowding approach (like Maximum Designs), but measured in distances rather
than number of points within a neighborhood. NSGA-II first sorts the solution set by each
objective, and then for each solution calculates the difference between the two closest
neighboring solutions for each objective. The overall crowding score for the solution is then the
sum of objective-wise differences. Note that for higher dimensions this is not generally
equivalent to any standard measure of distance, as the “closest neighbors” in one objective are
not generally closest neighbors in other objectives. SPEA uses an 0(n®) iterative clustering
technique. It starts by considering all solutions to be their own clusters, and iteratively merges
the closest clusters until the desired number of clusters is achieved. A representative solution
from each cluster is then chosen for selection. While the NSGA-II crowding method is more
efficient at O(nlogn), SPEA achieves much better diversity for more than two objectives as
discussed in (Deb 2005, Deb & Thiele 2002, and Khare 2003). Although we have not had the
opportunity for head-to-head computational comparisons, we believe the space-filling niche
operator will have competitive diversity preservation compared to SPEA despite its lower
complexity of 0(n?). Furthermore, unlike other recently suggested niching/selection operators
(such as those described in Deb 2014), it does not require the user to determine appropriate
algorithm parameters or the a priori provision of search directions or reference points to preserve
diversity.
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3. ANALYSIS FRAMEWORK AND SUPPORTING PROCESSES

The ARIES capability provides insight to help stakeholders in the requirements development
process integrate all the functionality desired for the system into a consistent, achievable set of
requirements. In addition to being achievable, the requirement sets generated by this capability
are also intended to be challenging (there should not be infinite ways to meet the targets) yet
robust (there should be multiple ways to meet the targets).

The overall process associated with an ARIES analysis effort is shown in Figure 14. The initial
steps, and most of the work in setting up an ARIES analytic capability, involve understanding
the needs of the system being procured. Once the problem is well defined, a two-stage
optimization is used to explore alternatives for the integrated requirement set with the first stage
bounding the search space and the second stage identifying a representative set of alternative
requirement sets. Following the two optimizations, optimal requirement sets are available and
can be interrogated in real-time by the stakeholders to understand the available options and gain
insight into the tradeoffs between different courses of action during the negotiation panel.
Additional detail on each of the steps in the process is provided in the following sections.

Map Desired Capabilities Map Metrics to Product Define Single-
to Metrics Structure Metrics O_bj(_ecﬂye
Y Optimizations

NS ARIES

—_
A 5

s

2

-------- B 60.5
i C 25
Establish Product T
Develop Structure Identify Technology
Metrics 5 e Options Ultra-High-

=== Qo?P
See £ Oy DS ARIES

E=
. . Generate Results
Understand Needs/Desired & Conduct Negotiation
Capabilities l - 1
|

ICD B -

Figure 14. Depiction of Process Associated with an ARIES Analysis

Then result of the ARIES process is a set of threshold and objective values for each requirement
where, at a minimum, all threshold values are simultaneously achievable. The outcome is based
on compromises made amongst the stakeholders and provides the best solution within the
budgetary, schedule, and technological constraints that were known. The resulting threshold and
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objective values can be used to inform a Capability Development Document (CDD) or other
requirements document.

3.1. Analysis Problem Definition

The first step in setting up an ARIES analytic capability is to understand the needs and desired
capabilities for the system being developed. In defense acquisition these are typically laid out in
an ICD, which guides requirements developers in defining requirements to satisfy the identified
capability gaps. Once the requirements developers have determined which requirements are
necessary to cover the needs of the system and the gaps identified in the ICD in preparation for
creating a draft CDD, ARIES can be employed to help integrate and set threshold and objective
values for the requirements.

Upon identification of which requirements to include, metrics that quantify the requirements and
capture their essence must be conceptualized. These metrics will be the decision criteria for the
ARIES optimization.

Next, the structure of the system being developed must be understood. By decomposing the
system into a product structure, the requirements can be tied to design decisions.> This enables
the requirements to be set with technological constraints adequately accounted for, ensuring that
the requirement levels decided upon can be achieved or that focus can be shifted to investments
in technologies that will allow the requirement levels to be achieved.

The last step in problem definition is to identify the technology options that are relevant to the
system being designed, being sure to include even those technologies that have not yet been fully
developed if there is a chance they could be of value to the program. This ensures that
investments in revolutionary technologies that are beneficial and instrumental to achieving a
desirable set of requirements can be appropriately prioritized against other technology
development efforts. All this setup work to define the problem feeds into the two-stage
optimization discussed in Section 2.2 and the associated subsections.

3.2. Negotiation Process and Interface

While previously discussed challenges were primarily numeric/analytic in nature, informing the
requirements negotiation process is principally a human challenge in that the trade space must be
presented in an intuitive manner that is agile to the needs of a real-time multi-stakeholder
adjudication panel.

Typically for a military acquisition program during the early drafting of the CDD, a collection of
stakeholders gathers and decides upon the official threshold and objective values that will be
used for the program going forward. This is a critical juncture in the program lifecycle. As
previously discussed, if the requirement levels are not set in a mutually feasible manner, then it is
often discovered only later in the acquisition process and requires a costly (and sometimes
programmatically fatal) recalibration of expectations and materiel solutions.
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3.2.1. Elicit Desired Thresholds

An important precursor to the requirements negotiation is level-setting the expectations of the
individual panel members by understanding their assumptions and predictions about the outcome
of particular requirements. This task ensures that the “art of the possible” resulting from the
ARIES tool for each requirement generally matches with the expectations of the SMEs who will
be negotiating the threshold levels in the adjudication panel.

Another part of this interaction is capturing the SMEs best estimate for a desired threshold level.
Again, this desired value needs to be in line with the art of the possible reported by the ARIES
tool, and will serve as an important reference point for the unified negotiation process, as
described further in the next section.

3.2.2. The ARIES Grid

The main ARIES user interface (UI) presents the requirements trade space to the negotiation
panel and enables real-time interrogation and mediation of threshold values. Key challenges for
this UI and the underlying negotiation process are to 1) display the complex, high-dimensional
trade space in an intuitive manner to users not versed in Operations Research methodology, 2)
provide a repeatable process that is not dependent on the order of who goes first in the
negotiation, 3) disallow systematic exploitation by panel members to set their own threshold
levels in such a way as to disadvantage everyone else, and 4) avoid situations where the
negotiation becomes “stuck” or locked into a repeating cycle.

Keeping these four goals in mind, observe that Figure 15 presents the ARIES grid along with
details for each “distribution panel” therein. The grid is laid out with one panel for each
dimension in the requirements trade space, with groupings of related requirements subtly shaded
and situated contiguously in the grid to aid usability. Each individual panel holds a
“Requirement Distribution” plot — essentially a histogram of the values for that requirement that
exist in the full requirements trade space. Along with this histogram, the plot details the
following additional pieces of information:

A) A filter slider that points in the direction of improvement and allows users to entirely
remove solutions that fall below the value of the slider from consideration. This is one of
the primary means of interrogating the trade space, as a filter in one panel will affect the
solutions visible in all other panels.

B) The current Possible Threshold (Tp) value given the filter settings on all panels. This is a
key requirements value reported by ARIES, and all Tp values are guaranteed to be
simultaneously feasible.

C) The Desired Threshold (Tp) value provided by the users, which represents their requested
threshold value for that requirement. This is a static value elicited before the negotiation
panel.

D) The current possible Objective (O) value given the filter settings on all panels. This is
the second key requirements value reported by ARIES, and while not all O values can
simultaneously be achieved, it is at least guaranteed that there is some combination of
technologies that are able to achieve the value for each individual dimension.
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E) The distribution of requirements solutions below Desired Threshold. These are colored
yellow to visually indicate they are below the users’ expectations.

F) The distribution of requirements solutions above Desired Threshold. These are colored
green to visually indicate they meet or exceed the users’ expectations.
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Figure 15. An example panel from the ARIES grid showing the distribution of values for
the Weight Available requirement

The ARIES grid is designed to inform a negotiation panel by allowing individual members to
perform filtration actions on their requirements panels to bring their possible threshold, Tp, as
close as possible to their desired threshold, Tp. While the grid presents all information about all
requirements given the filter settings, it is advised that individual panel members focus primarily
on the few requirements panels of primary interest to them to avoid becoming overwhelmed by
the full grid.

Inevitably, as the process proceeds and members perform more and tighter filtration actions to
achieve their desired thresholds, some actions will harshly affect the remaining solutions
available in one or more other requirement panels. It is important that ARIES has a built-in
mechanism that 1) intuitively informs when these harsh actions occur, and 2) provides a method
of “backtracking” the action in the least disruptive manner possible and without putting the
process in a loop of repeated undo’s and redo’s. Naively, one might expect that simply undoing
the last filtration event would suffice. If the unacceptable condition only emerged due to the last
action, then this may work. However, given the human element of the negotiation process, it is
possible the unacceptable condition went unnoticed for several rounds or most likely, that the
unacceptable condition is a cumulative consequence of a/l prior filtration events, not merely the
most recent one.
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Figure 16 shows an example from the GCV test problem of a potentially unacceptable condition
in the Rocket Propelled Grenade (RPG) Protection requirement panel on the ARIES grid. In this
instance, notice that the direction of improvement is towards a higher protection score and the
desired threshold was elicited at 0.8752 — above not only the possible threshold, but also above
the currently best possible objective score of 0.7737. This situation has arisen due to filtration
actions in other panels, which have inadvertently removed all solutions at or near the desired
RPG Protection score. ARIES highlights this condition by coloring the panel red in the region
where the best possible solution falls below the desired level; a larger red region indicates a
larger gap between objective and desired. This red region provides immediate visual feedback
when a filter action is performed and may itself inform or modify the filter action that produced
it (i.e., relaxing filter(s) slightly to readmit solutions that meet the desired criteria).

( RPG Protection (0-1 Score) |
¥

Tp=0.4798
0 =0.7737

4

0.4200 0.6850 0.9500

Figure 16. A single distribution panel from the ARIES grid showing a red region that
highlights the gap between currently best available and desired levels

In addition to this visual cue, a ranking algorithm was also devised that chooses the best filtered-
out point(s) to readmit in order to bring back desirable solutions into a panel, such as Figure 16,
while having the least disruptive impact in other panels. To do this, solutions are ranked based
on a specially-devised modification to the standard Euclidian distance metric. Dubbed “anti-
optimal distance,” this metric determines the distance between a solution and a target — only
accumulating distance for those objectives where a solution is worse than the target.

Determining solutions with the lowest anti-optimal distance value allows identification of points
that require the smallest relaxation of filters for readmission; if the current filter settings are
considered the target, then the closest solution in anti-optimal distance will be admitted, moving
the filters in the least disruptive manner.

Another usage of the anti-optimal distance ranking algorithm is to find the closest solution(s) to a
desirable reference point — such as the point given by Tp in all dimensions, or a utopic point
representing the best possible score in each capability area. By feeding this point to the ranking
algorithm, one can trivially find solution(s) that are closest to such utopic points. If the
histograms are filtered to admit only these near-utopic points, that allows for an alternate
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negotiation mechanism where filters are progressively relaxed to add trade space, rather than
progressively tightened to restrict it.

In summary, the ARIES grid provides a step-by-step method whereby a group of users can
systematically tighten or relax filter settings to achieve a set of simultaneously achievable
threshold values (Tp) while also having insight into how much better or worse each threshold
value is compared to the elicited desired level (Tp). Immediate visual cues indicate when certain
filtration actions create undesirable conditions (i.e., no remaining solutions can achieve the
desired threshold). Figure 17 displays the full ARIES grid for 35 objective dimensions of the
GCV example model. When an individual requirement panel has all remaining solutions better
than the elicited desired level, the panel turns green. The ideal end state for the negotiation
process would be to arrive at a set of filter positions for which all panels turn green, but this will
be nearly impossible in practice for any real system. While SMEs must still choose which
requirements are deprioritized compared to others, ARIES ensures the deprioritized thresholds
are set in the best possible manner.
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Figure 17. Full ARIES grid showing 35 requirement panels for the GCV model, with
similar requirements clustered and similarly shaded

3.3. Process Vetting Activities

3.3.1. MCoE Discussion

SMEs and leadership at the US Army Maneuver Center of Excellence (MCoE) Mounted
Requirements Division (MRD) were engaged early in the project to help the team fully
understand the current requirements integration process. Initial engagements were in May 2015,

where the premise of the research and vision for the end state was presented by the research
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team. The audience’s initial reaction was skeptical since the proposed capability was a
significant departure from what had been done previously.

Upon discussion, the SMEs and leadership began to concede that there are challenges in the
requirements integration process, especially once technological and programmatic constraints are
considered, since it is such a complex problem. Eventually, there was consensus that an analytic
capability could be of great benefit to the requirements development community and they
expressed interest in partnering going forward and offered to help test the capability and process
once it was developed.

This meeting provided the research team with a much better understanding of the existing
requirements integration and negotiation process. This understanding proved invaluable to
shaping the eventual outcome of the project as decisions could be made regarding the capability
while considering the likely value and impact to real-world requirements developers.

3.3.2. Mock Panel

Initial vetting of the analysis process was performed on April 4, 2016 using a mock panel
conducted with staff members at Sandia National Laboratories who were not involved in the
development of the capability. The mock panel consisted of approximately twenty staff
members playing the roles of requirements developers for the example problem identified in
Section 1.3.

This mock panel focused on testing the functionality of the analysis capabilities included in the
prototype tool, with the intent of identifying stumbling blocks and getting feedback on additional
capabilities that users might find useful.

The participants quickly understood the intent and rapidly began to understand the insight being
provided by the visuals. The tool proved intuitive and relatively easy for the participants to use.
Most of the feedback received was on subtle ways to improve the user interaction with the tool,
such as allowing the moderator to type in specific values rather than relying on sliding the filter
to enable finer granularity, and have been incorporated as appropriate.

29



4. CONCLUSION

The result of this research included mathematical advances in ultra-high dimensional
optimization via the development of innovative seeding, extreme preservation, and space filling
niching techniques implemented with a prototype analytic tool that provides a unique
requirements integration capability. The optimization advances are broadly applicable to GAs,
while the ARIES analytic capability is generally applicable to requirements development efforts.
The success of this project led to significant interest from potential transition partners and to
several future application possibilities.

Despite the success of this research, multiple opportunities for future work to enhance this
capability exist. Three primary focus areas are detailed within this section. Some thought was
given to each topic, but budget and time constraints prevented thorough investigation.

4.1. Solution Inbreeding

Preliminary tests where 1D optimization results for each objective were seeded into the initial
population for a pathologically difficult 2D toy problem showed a tendency to explore only
locally near the seeded points. The observed behavior is caricatured in Figure 18, where the
child solutions (round points) are only observed to be clustered around the initial seed points
(star points) and do a poor job thoroughly representing the true Pareto frontier (dashed line).
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Figure 18. Demonstration of Inbreeding Behavior Observed

The primary hypothesis for this behavior is that other randomly seeded solutions whose offspring
would eventually fill out the trade space tend to be prematurely dominated and killed off by the
1D optimal seeds. Though this is likely less of an issue in ultra-high dimensional problems where
domination is harder to achieve, broadly speaking the issue can be summarized as later
populations are largely “inbred” solutions from the initial 1D optimal seeds since those solutions
already have a “leg up” over all other early solutions. Seeding 1D optimal solutions at knee
points in addition to the extremes has a positive effect, but there is still a tendency for later
populations to cluster around the seeded points. It quickly becomes intractable to seed an
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adequate number of points to eliminate any unnatural gaps in the Pareto frontier, since each seed
requires a separate optimization. Fortunately, a potential mitigation technique is an algorithm
developed at Sandia National Laboratories that dynamically heals solutions that violate genetic
constraints (technology compatibility dependencies) in an unbiased manner (this healing was not
employed in the 2D toy problem). Healing ensures that child solutions are not eliminated simply
because they violate problem constraints and allows large, but feasible changes in chromosomes.
While we believe this would alleviate most issues with inbreeding, time did not permit the full
investigation into realistic many-objective problems.

4.2. Data Visualization/Human Cognition Enhancements

As mentioned in Section 3.2, a significant hurdle to utilizing the results of an ultra-high
dimensional optimization is in effectively presenting the data and overcoming human cognition
limitations. While aspects of this were addressed within the scope of this project and a
collaborative workspace was developed to utilize ARIES results, there is significant room to
enhance the user experience.

One idea is for each stakeholder in the requirements integration process to have a tablet that
displays the ARIES results. The user could then display only those requirements that are of
importance to them on the tablet while the full set of requirements is projected to the entire
group. This would enable each user to focus on the impacts of changes to their area of interest
while a moderator focuses at a high level on the interactions between different users’
requirements. Functionality to allow the moderator to designate control to a specific user would
allow users a hands-on experience while communication between each tablet and a central
system would still allow the entire group to see the impacts of each user’s changes in real time.

4.3. Metrics to Aid Requirements Integration Process

An observation made while carrying out the mock ARIES requirements integration panel was
that quantifying various aspects of the process would be beneficial. Specifically, developing
metrics to inform which requirement should be addressed next, when to stop the negotiation
process, and how robust the final set of requirement values is would provide great utility.

How to analytically determine which requirement should be addressed next (i.e., have its filter
adjusted), is a remaining challenge to the flow of the process. It is not always evident which
users are in the “best shape” and which have over-compromised their desired thresholds. This is
complicated since users or groups of users are responsible for differing numbers of requirements.
If one group is responsible for five requirements, of which one meets the desired threshold while
the other four do not, and another group is responsible for one requirement, which does not meet
the desired threshold, which group is in worse shape? The magnitude by which a user’s
requirements are unmet is also potentially of significance. Developing a fair metric to capture
these considerations would promote improved negotiation flow.

Similar issues exist related to determining when the negotiation process should cease.

Negotiation could continue indefinitely if users are unsatisfied and unwilling to accept the
current values for their requirements. Quantifying the state of affairs throughout the process
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would help inform whether the compromises being made are having a net positive or negative
effect on the overall set of requirements. Being able to associate a value to the status of the
negotiation could indicate to a moderator that progress is no longer being made and there is no
reason to continue negotiating (i.e., the situation will get no better than it currently is).

Additionally, quantifying the robustness of the result could indicate if the consensus set of
requirement values will be acceptable or if it will pose too much risk. A brittle solution would
be one where there are only limited options for achieving the consensus set of requirement
values (e.g., a specific developmental technology is required) and poses a significant risk to the
eventual success of the program. A robust solution provides the greatest chance that the program
will succeed. Measuring the robustness of the consensus decision would enable a moderator to
raise the question of risk to the group of requirements developers and facilitate a discussion to
determine if the risk is acceptable before finalizing the set of requirement values.
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5. NOTES

! Definitions of “many” differ, but generally more than three is “many” and more than eight is
quite rare.

2 Randomly generated points can also be added to round out the population size and provide
additional diversity.

3 The product structure is comprised of major subsystem categories (e.g., engine, transmission,
armor). This is distinct from technology options, which are unique technologies that can fulfill a
subsystem role. For example, a 450 horsepower diesel engine could be one technology option
for the engine product structure element.
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