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Role of Atomistic Modeling in Studying Plasma Material Interactions
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3 SNAP Definition and Work Flow
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4 Tungsten-Beryllium SNAP Fitting

• Initially fit SNAP potential for pure elements

• Making a multi-element SNAP potential does

sacrifice some accuracy from either pure

component fit.

• Training set includes W-Be intermetallic structures

Description NE NF UE UF

W-Be:

Elastic Deformt 3946 68040 3 • 105 2 • 103

Equation of Statet 1113 39627 2 • 105 4 • 104

DFT-MDI 3360 497124 7 • 104 6 • 102

Surface Adhesion 381 112527 2 • 104 9 • 104

t Multiple crystal phases included in this group:
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5 Extrapolation Testing - Single Implantation Simulations

• Single implantations of 75 eV Be in W
• MD depth profile is more shallow than binary collision

models predict
• Capture rate is lower than BC model at 40% (versus 60%)
• Improvement in defect formation energies
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Depth (A)

Defect Type

[111] Dumbbell

Substitution

[100] Surf. Hollow Site

Tetrahedral Interstitial

[110] Dumbbell

Octahedral Interstitial

Other

Surf. Bridge Site

Percent of Implanted Be

(100) Surface (111) Surface

41.2 23.9

22.2 34.6

12.3 8.3

10.4 12.4

8.4 11.3

5.3 4.1

0.4 2.8

0.03 2.6

Defect Type

•

Formation Energy (eV)

DFT SNAP BOP

[111] Dumbbell

Substitution

4.30

3.11

[100] Surf. Hollow Site -1.05

Tetrahedral Interstitial 4.13

[110] Dumbbell 4.86

Octahedral Interstitial 3.00

[100] Surf. Bridge Site 1.01

3.66

3.29

-1.39

4.20

4.29

5.11

0.44

0.67

-2.00

-3.52

-0.28

-0.03

0.34

-1.30



Cumulative Energetic Be Implantation in W

4000 inserted Be atoms, 1.1 x 1020 m-2
35% Retention
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W and Be Depth Distributions at 40

W-Initial

W-Implantation

Be-Initial

Be-Implantation

ns

Purple: Beryllium
Gray: Tungsten

• 75 eV Be implanted every 10 ps

• 1000 K, (100) surface, 6 nm x 6 nm x
12 nm box

Initially Be implants and resides in W
as <111> dumbbell or substitutional
defects

• Amorphous layer forms 1.5 nm into
surface and 0.3 nm above surface

• W depth profile indicates loss of
crystal structure at higher fluences

Be depth profile is deeper than
expected based on initial implantation
depth
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7 Cumulative Be Athermal Deposition on W Surface

4000 inserted Be atoms, 1.1 x 1020 m-2 Purple: Beryllium
Gray: Tungsten
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W and Be Depth Distributions at 40 ns

— W-Deposition

— Be-Deposition

• Be randomly placed on surface
every 10 ps with zero energy

- Initially Be resides at hollow sites

Be begins to exchange with
tungsten once hollow sites fill up

Similar amorphous layer forms at
higher fluences

• Thicker layer that extends from 0.5
nm below surface to 1 above surface

Be remains near surface

Almost 20% of W in the first 1.5
nm is now located above the original
surface
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Exchange Mechanism with Beryllium

W Displacement vs. Time

— Atom 12487
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• Clear jumps in tungsten displacement are exchanges with beryllium

• Low tungsten diffusion outside beryllium exchanges



9 Summary

We have developed a machine learned SNAP potential for studying W-Be
plasma material interactions

• The SNAP potential well reproduces both W and Be as well as W-Be
intermetallic properties and improves upon existing potentials for parameters
most relevant to radiation damage modeling

We have performed large simulations of cumulative Be implantation or
deposition on tungsten

• An amorphous layer of mixed W-Be has been observed which may be a pre-
cursor to intermetallic formation

• An exchange mechanism allows tungsten to migrate into the surface
amorphous layer

• This potential will be extending to include both hydrogen and helium


