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What is Molecular Dynamics Simulation? ) feums,

» Continuum models require underlying
models of the materials behavior

* Quantum methods can provide very
complete description for 100s of atoms

)
* Molecular Dynamics acts as the “missing &
link” —
» Bridges between quantum and continuum

models

w

* Moreover, extends quantum accuracy to 2
continuum length scales; retaining atomistic =
information
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What is LAMMPS?

| Initial positions Interatomic
Bo R NGE : and velocities potential

\ / « Biomolecules
* Polymers (soft
materials)

* Materials science
(hard materials)

» Mesoscale to

|

o~

continuum
4 o )
Large-scale Atomic/Molecular Positions and
Massively Parallel Simulator velocities at
later times
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MD Approximations Change Over Time

Twobody (B.C.) Manybody (1980s) Advanced (90s-2000s) Big Data / Deep / Machine
Lennard-Jones, Hard Stillinger-Weber, REBO, BOP, COMB, Learning (2010s)

Sphere, Coulomb, Tersoff, Embedded ReaxFF GAP, SNAP, NN, ...
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Bispectrum Components as Descriptor
* Neighbors of each atom are mapped onto unit sphere in 4D

(6,,6.¢)= (6(’)"‘“ r/r.. ,cos_l(z/r),tan‘l(y/x))

* Expand density around each atom in a basis of 4D hyperspherical harmonics,

« Bispectrum components of the 4D hyperspherical harmonic expansion are used as the
geometric descriptors of the local environment
* Preserves universal physical symmetries
* Rotation, translation, permutation
« Size-consistent

”LLJ wf — U;,m/(O, O, O) + Z fc(rii’)wiUzz,m/<907 (97 ¢)

m,
Tl <Rcut

jmm j2
le jo.j — — E E E H.Ylmlml ’U, ;U ’
sJ 2 ]2m2ml2 mi ml mg,m2

mi1 ml—_Jl m2 mz—_]Q m,m’=

Symmetry relation: B g _ B jo g _ By jij
27+1 250 +1  255+1

Drautz showed that Steinhardt, SOAP, SNAP and many other 5
descriptors are all special forms of the atomic cluster expansion (Phys.Rev.B 2019)
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Effect of High-Order Bispectrum Components

« MD simulation of molten tantalum using SNAP TaO6A potential
« Magnitude of average force contributed by each bispectrum
component
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Effect of High-Order Bispectrum Components

» Elastic constants for tantalum versus band limit

Linear SNAP

Band Limit 2J
max

Quadratic SNAP
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Band Limit 2J
max
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ML-IAP Definition

‘X N N % N
Model Form sssss R
. . o L F N N NNl
» Energy of atom i expressed as a basis expansion Fitting P —_—

over K components of the bispectrum (B..) M et
Egnar = Bo+ Z Br(B}, — Big) >

FitSNAP.py

Regression Method OAKOTA
» B vector fully describes a SNAP potential
* Decouples MD speed from training set size U
min(| |W . D,@ — T| l2 — Tn ||,3||n) Objective Functions,

" é w Material Properties
»

*
*

* = ®
Weights Set of Descriptors DFT Training



SNAP Fitting Process
FitSnap.py

Metrics

“Hyper-parameters”
« Cutoff distance

» Group Weights
 Number of Terms
 Etc.
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QDFT

Training

Dakota

optimization,
sensitivity

Data

fitsnap.py

Communicate with

LAMMPS; weighted

regression to obtain
SNAP coefficients

Force residuals
Energy residuals
Elastic constants
Etc.

Bispectrum
components &
derivatives,
reference potential



Outline of Current Research Areas

SNAP Computational Speed in LAMMPS
*  SNAP with OpenMP (Good for CPUs)
 SNAP with KOKKOS (CPU, GPU,...) [ECP CoPA project]
* Exploring new GPU algorithms [NERSC/NESAP]
Plasma-Facing Materials (SciDAC-4)
* Tungsten/Beryllium (complete)
«  W/Be/H (in progress)
* Nitrogen, Neon (future work)
Phase Transitions in Extreme Environments
Radiation Damage in llI-V Semiconductors
 New Multi-element SNAP formulation
SNAP Accuracy
* Quadratic SNAP
 SNAP + Neural Networks
» Better descriptors
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National _
Laboratories

10



Sandia
|‘|'| National

Laboratories

Adding Descriptors Increases Cost A Lot

3

Performance [10”atom-steps/s]
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Short MD simulation of BCC tungsten @ 300K
GPU and KNL use the LAMMPS Kokkos package

2000 atoms, 1 node
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Tungsten and Beryllium as Plasma-Facing Material (@ &=,

ITER fusion reactor:

e Putting the sun in a box

* Plasma-facing material is tungsten

 Exposed to He and H at elevated
temperature

* Fuzz buildup limits power output and
useful life of divertor elements

First Wall
PFM = Beryllium

Divertor
PFM = Tungsten
10-20 MW/m?

Plasma exposure time

RN01222007

fast growth rate

Luis Sandoval, Blas Uberuaga,

Nanostructured layer growth (fuzz) is observed at Danny Perez, Art Voter, Phys.
T=1120 K and a flux of ~5x10% He m?s™ [2]. Rev. Lett. (2015)



Training SNAP for Transferability — Tungsten+Beryllium

Making a multi-element SNAP potential does sacrifice
some accuracy from either pure component fit.

Looking at which training data was weighted heavily

Description N Nrp og OF
W-Be:

Elastic Deform’ 3946 68040 3-10° 2103
Equation of State” 1113 39627 2-10° 4-10*
DFT-MD' 3360 497124 7-10* 6-10°
Surface Adhesion 381 112527 2-10* 9.10*

1 Multiple crystal phases included in this group:

Fraction of Training Data

Fraction of Training Data
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Fraction of Captured Be

Single Implantation Simulations

MD depth profile is more shallow than binary collision

models predict

Capture rate is lower than BC model at 40% (versus 60%)
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Percent of Implanted Be

Defect Type (100) Surface (111) Surface

[111] Dumbbell 41.2 23.9

Substitution 22.2 34.6

[100] Surf. Hollow Site 12.3 8.3

Tetrahedral Interstitial 10.4 12.4

[110] Dumbbell 8.4 11.3

Octahedral Interstitial 53 4.1

Other 0.4 2.8

Surf. Bridge Site 0.03 2.6
Defect Type Formation Energy (eV)

DFT SNAP BOP

[111] Dumbbell 4.30 3.66 0.67
Substitution 3.11 3.29 -2.00
[100] Surf. Hollow Site -1.05 -1.39 -3.52
Tetrahedral Interstitial 4.13 4.20 -0.28
[110] Dumbbell 4.86 4.29 -0.03
Octahedral Interstitial ~ 3.00 5.11 0.34
[100] Surf. Bridge Site 1.01 0.44 -1.30

14
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Cumulative Energetic Implantation LUf

4000 atoms, 1.1 x 1020 m=2
35% Retention

0.8H

o
o

Atom Fraction

0.2

W and Be Depth Distributions at 40 ns

== W-Initial
= W-Implantation
== Be-Initial
= Be-Implantation

=
IS

'
0.0 0.5 1.0
Depth (nm)

15

75 eV cumulative Be implantation in W
Implanted every 10 ps

1000 K, (100) surface, 6 nm x 6 nm x 12
nm box

Initially Be implants into material and
resides at defects like <111> dumbbell
or substitutional sites

At higher fluences, layer becomes
amorphous

o Exchange of W and Be with no
obvious crystal structure

Amorphous layer extends from about
1.5 nm in the surface to 0.2-0.3 nm
above the original surface

Tungsten loses crystal structure
Be penetrates deeper (diffusion?)
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Cumulative Thermal Deposition

mmmmmm

nnnnnnnnnnnnnnnn

0.8

Atom Fraction
°
>

o
IS

0.2

-1.0 -0.5 0.5 1.0 1.5

0.0
Depth (nm)

4000 atoms, 1.1 x 1020 m=2

Be now randomly placed on surface
with no energy

Rest of simulation parameters are
the same
Initially Be resides at hollow sites

but once those become occupied,
Be starts to exchange with W

Similar results of amorphous layer
that forms at higher fluences

Layer is thicker, extending from 0.5
nm below the surface to 1 nm
above the surface

Be mainly remains near surface

Almost 20% of the W in the first 1.5
nm is located above the original
surface



Can We Improve Multi-Element SNAP? rh)

Elemental

Current Multi-element SNAP / Weight

Ujmm! — Ujmm’ (07 0, 0) Z fc(ri’)wfsUjmm'(@O? 97 gb)

T; / < Reut

J1.Jz2,J — § : § : § : J;T;Ll:;lé uml m'lumg ml
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Explicit Multi-Element SNAP

5
Elemental W = Ujmn(0,0,0)+ ) fe(riin)WsUjmme (00, 0, @)
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Computational Cost of Multi-Element

Cost dominated by dBi/dR]
For each bispectrum Ol ' ' '
component there are !
Nelem”3 labellings

But neighbor j only
contributes to the ones
that have at least one
label matching element of |
Nelem”2 labellings of
remaining two labels

6

Performance (10 at-steps/s)
=
=2
|

0.001 : : :



Indium Phosphide SNAP Potential

Interest in studying radiation damage in
semiconductors such as indium
phosphide
= Potential needs to be able to
reproduce dynamics of a high
energy collision cascade

For radiation damage, accurately
reproducing defect formation energies is
crucial

SNAP needs to not only reproduce these
important parameters but also be able to
distinguish between 2 element types

Initial multi-element version of SNAP
replicated InP properties fairly well but
failed in reproducing the defect
formation energies

= Difference between SNAP and DFT
was greater than 1 eV for some
defects
Preliminary results of new multi-element

alloy formulism of SNAP is showing much
improvement

In Interstitial

P Interstitial
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InP SNAP Preliminary Results ) i

Compare original and alloy
version of SNAP for InP

Compare defect formation
energies between SNAP and DFT

= Defect formation energies
were chosen to conserve
stoichiometry

Previous multi-element version
of SNAP failed to reproduce
defect formation energies

Energy Difference (eV)

= Still over 1 eV difference
from DFT for best potential

New alloy multi-element version
of SNAP performs much better

= Defect formation energies
show much reduced error
from DFT

= Largest difference id 0.23 eV

Difference Between SNAP and DFT Energy

1.6

Bl Original
14 Bl Alloy

1.2

1.0

0.8

0.2

0.
Fg_a-Hn_a P v+P_i In_v+In_i In_v+P_v In_i+P_i w aa

Defect Type



InP Elastic Constants LL

C11 (Gpa) 101.1 99.5

C12 (Gpa) 56.1 53.6

C44 (Gpa) 45.6 16.7

Bulk Modulus (Gpa) 711 66.8
Shear Modulus (Gpa) 22.5 17.7, 26.1

Poisson Ratio 0.36 0.33

= Elastic constants for InP are fairly well reproduced

= More consistent with expected values compared to previous iterations
of this potential
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* D.N. Nichols, D.S. Rimai, and R.J. Sladek Solid State Commun. 667,

36 (1980)



Energy Error (eV/atom)

What About Adding Quadratic Terms? ) e,

i i, 1o i
Esyap = B-B +§(B)T-a-B

Linear terms are 4-body « Energy, force, stress remain linear in fand &
Quadratic terms are 7-body X « Can still use linear least squares (SVD)
Number of linear coefficients grows as O(J°) +  Number of columns will increase from K to K(K+1)/2

Number of quadratic coefficients grows as = O(J°)

Wood and Thompson, J. Chem.Phys., March, 2018
Also https://arxiv.org/abs/1711.11131

SNAP Tantalum
100 )
r Linear SNAP —=— 106 |
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Quadratic SNAP — Cross Validation

» Concerned with overfitting now that there are MANY

more free parameters during the fit.

* (Training Points) : (Descriptors) still >> 1 for

assembled training sets
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Conclusions i) o

= Molecular dynamics is a powerful tool for exploring materials behavior

= Can access physics, chemistry, length, and timescale that is inaccessible to
other methods (continuum, quantum)

= Applications are driving demand potentials of greater accuracy

= We have built a system for converting large amounts of quantum
calculations into SNAP potentials for large-scale MD simulations of complex
materials

= SNAP strikes a good balance between speed, accuracy, and robustness
= We still don't really understand why ML potentials work or don't work
= Still lots of room for improvement

= (C\\ =R 2
I=1=1m

SciDAC4-PSI2  ,




