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What is Molecular Dynamics Simulation?

• Continuum models require underlying
models of the materials behavior

• Quantum methods can provide very
complete description for 100s of atoms

• Molecular Dynamics acts as the "missing
link"

• Bridges between quantum and continuum
models

• Moreover, extends quantum accuracy to
continuum length scales; retaining atomistic
information

constraints
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What is LAMMPS?

Initial positions

and velocities

Large-scale Atomic/Molecular
Massively Parallel Simulator

Interatomic

potential

• Biomolecules

• Polymers (soft
materials)

• Materials science
(hard materials)

• Mesoscale to
continuum

[Positions and

velocities at

later times
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MD Approximations Change Over Time
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• Resources are limited, which is your best choice?
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Bispectrum Components as Descriptor
• Neighbors of each atom are mapped onto unit sphere in 4D
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( 
9 0 19 10) = (0 loncix rlr„,,cos-1(z/r), tan-1(y/ x))

• Expand density around each atom in a basis of 4D hyperspherical harmonics,

• Bispectrum components of the 4D hyperspherical harmonic expansion are used as the
geometric descriptors of the local environment

• Preserves universal physical symmetries

• Rotation, translation, permutation

• Size-consistent

ui
111,171

jm,m~ 010) +

riii <Rcut

1 32 •, 3mm

(Ujni,rni )* H Zn42 Tri/ U 
71 32

rn1 M2 ,M2/

772,2,774=—i2 Tri,m/=—./

Symmetry relation: B31,32,3 

)wiu73,7,1(80, 8, (5)

3,32,31 31,3132

2j + 1 2ji + 1 2j2 + 1

Drautz showed that Steinhardt, SOAP, SNAP and many other 5

descriptors are all special forms of the atomic cluster expansion (Phys.Rev.B 2019)



FT
Effect of High-Order Bispectrum Components

• MD simulation of molten tantalum using SNAP TaO6A potential
• Magnitude of average force contributed by each bispectrum

component
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Effect of High-Order Bispectrum Components
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ML-IAP Definition

Model Form 

• Energy of atom i expressed as a basis expansion
over K components of the bispectrum (Bjc)

EiSNAP = 00 13k(Blc Ma))

k=1

Regression Method

Fitting
Hyper- arameters

01111111°- LFitS NA P. py

DAKOTA
• 13 vector fully describes a SNAP potential
• Decouples MD speed from training set size

mina*• DO — T112 — PYri 11011n)

Weights Set of Descriptors DFT Training

Objective Functions,
Material Properties
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SNAP Fitting Process

FitSnap.py

"Hyper-parameters"
• Cutoff distance
• Group Weights
• Number of Terms
• Etc.
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Dakota
optimization,
sensitivity

Metrics

fitsnap.py
Communicate with
LAMMPS; weighted
regression to obtain
SNAP coefficients

• Force residuals
• Energy residuals
• Elastic constants
• Etc.

QUEST
QDFT
Training
Data
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LAMMPS

Bispectrum
components &
derivatives,
reference potential
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Outline of Current Research Areas

■ SNAP Computational Speed in LAMMPS
• SNAP with OpenMP (Good for CPUs)

• SNAP with KOKKOS (CPU, GPU,...) [ECP CoPA project]

• Exploring new GPU algorithms [NERSC/NESAP]

■ Plasma-Facing Materials (SciDAC-4)
• Tungsten/Beryllium (complete)

• W/Be/H (in progress)

• Nitrogen, Neon (future work)

• Phase Transitions in Extreme Environments

• Radiation Damage in WA/ Semiconductors
• New Multi-element SNAP formulation

• SNAP Accuracy

• Quadratic SNAP

• SNAP + Neural Networks

• Better descriptors
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Adding Descriptors Increases Cost A Lot
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• Benchmarks for Exascale Computing Project
• Short MD simulation of BCC tungsten @ 300K
• GPU and KNL use the LAMMPS Kokkos package
• 2000 atoms, 1 node
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Tungsten and Beryllium as Plasma-Facing Materia

First Wall
PFM = Beryllium

Divertor
PFM = Tungsten
10-20 MW/m2

Plasma exposure time
RN01222007 (e)

Nanostructured layer growth (fuzz) is observed at
T=1120 K and a flux of -5x1022 He m 2s1 [2].
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ITER fusion reactor:
• Putting the sun in a box
• Plasma-facing material is tungsten
• Exposed to He and H at elevated

temperature
• Fuzz buildup limits power output and

useful life of divertor elements

fast growth rate

Luis Sandoval, Blas Uberuaga,
Danny Perez, Art Voter, Phys.
Rev. Lett. (2015)



Training SNAP for Transferability Tungsten+Beryllium

• Making a multi-element SNAP potential does sacrifice
some accuracy from either pure component fit.

• Looking at which training data was weighted heavily

Description NE NF UE QF

W-Be:

Elastic Deformt 3946 68040 3 • 105 2 • 103

Equation of Statet 1113 39627 2 • 105 4 • 104

DFT-MDt 3360 497124 7 • 104 6 • 102

Surface Adhesion 381 112527 2 • 104 9 • 104

t Multiple crystal phases included in this group:
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Fraction at Average Error
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Single Implantation Simulations

• MD depth profile is more shallow than binary collision
models predict

• Capture rate is lower than BC model at 40% (versus 60%)
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Defect Type

Percent of Implanted Be

(100) Surface (111) Surface

[111] Dumbbell 41.2 23.9

Substitution 22.2 34.6

[100] Surf. Hollow Site 12.3 8.3

Tetrahedral Interstitial 10.4 12.4

[110] Dumbbell 8.4 11.3

Octahedral Interstitial 5.3 4.1

Other 0.4 2.8

Surf. Bridge Site 0.03 2.6

Defect Type Formation Energy (eV)

DFT SNAP BOP

[111] Dumbbell 4.30 3.66 0.67

Substitution 3.11 3 .29 -2.00

[100] Surf. Hollow Site -1.05 -1.39 -3.52

Tetrahedral Interstitial 4.13 4.20 -0.28

[110] Dumbbell 4.86 4.29 -0.03

Octahedral Interstitial 3.00 5.11 0.34

[100] Surf. Bridge Site 1.01 0.44 -1.30
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Cumulative Energetic Implantation

LO
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■ 75 eV cumulative Be implantation in W

■ Implanted every 10 ps

■ 1000 K, (100) surface, 6 nm x 6 nm x 12
nm box

■ Initially Be implants into material and
resides at defects like <111> dumbbell

or substitutional sites

■ At higher fluences, layer becomes
amorphous

o Exchange of W and Be with no

obvious crystal structure

■ Amorphous layer extends from about
1.5 nm in the surface to 0.2-0.3 nm
above the original surface

■ Tungsten loses crystal structure

■ Be penetrates deeper (diffusion?)



Cumulative Thermal Deposition

4000 atoms, 1.1 x 1020 m-2
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• Be now randomly placed on surface
with no energy

• Rest of simulation parameters are
the same

• Initially Be resides at hollow sites
but once those become occupied,
Be starts to exchange with W

• Similar results of amorphous layer
that forms at higher fluences

• Layer is thicker, extending from 0.5
nm below the surface to 1 nm

above the surface

• Be mainly remains near surface

• Almost 20% of the W in the first 1.5

nm is located above the original

surface



Can We Improve Multi-Element SNAP?

Current Multi-element SNAP

U 3•mm

=

Elemental
Weight

= Uj mt(0, 0, 0) + fc(rit)wsUjmmi (00, Ol 0)

ri/. < Rcut
j2 J

(ud
mrn

2

i2m2m,2 ml,m1 m2,1712

m2,m/2=—j2 m,m/,

Explicit Multi-Element SNAP

6
Elemental u ,3mm

Basis Function

= ujmin,(0, 0, 0) + E fc(riowsujrnmfoo, 0, 0)
< Rcut

i/ E

Three-Element 
j1 j2 

6
BIG. 715 0,11!,Y1111rn U U

Bispectrum 13 23 

7,/

rn
j2 m 2 2m 

32m2m2

m2,at2=—,12 Tn,m/=—./
Component

Sandia
National
Laboratories



Computational Cost of Multi-Element

• Cost dominated by dBi/dRj
• For each bispectrum
component there are
NelemA3 labellings

• But neighbor j only
contributes to the ones
that have at least one
label matching element of j

• NelemA2 labellings of
remaining two labels

0.1

1 2
Nelem

4 8
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Indium Phosphide SNAP Potential

• Interest in studying radiation damage in
semiconductors such as indium
phosphide

• Potential needs to be able to

reproduce dynamics of a high
energy collision cascade

• For radiation damage, accurately
reproducing defect formation energies is
crucial

• SNAP needs to not only reproduce these

important parameters but also be able to
distinguish between 2 element types

• Initial multi-element version of SNAP
replicated InP properties fairly well but
failed in reproducing the defect
formation energies

• Difference between SNAP and DFT

was greater than 1 eV for some
defects

• Preliminary results of new multi-element
alloy formulism of SNAP is showing much
improvement
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InP SNAP Preliminary Results
• Compare original and alloy

version of SNAP for lnP

• Compare defect formation

energies between SNAP and DFT

• Defect formation energies

were chosen to conserve

stoichiometry

• Previous multi-element version

of SNAP failed to reproduce

defect formation energies

• Still over 1 eV difference

from DFT for best potential

• New alloy multi-element version

of SNAP performs much better

• Defect formation energies

show much reduced error

from DFT

• Largest difference id 0.23 eV
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InP Elastic Constants

Exp. SNAP

C11 (Gpa) 101.1 99.5

C12 (Gpa) 56.1 53.6

C44 (Gpa) 45.6 16.7

Bulk Modulus (Gpa) 71.1 66.8

Shear Modulus (Gpa) 22.5 17.7, 26.1

Poisson Ratio 0.36 0.33

■ Elastic constants for lnP are fairly well reproduced

■ More consistent with expected values compared to previous iterations
of this potential
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* D.N. Nichols, D.S. Rimai, and R.J. Sladek Solid State Commun. 667,
36 (1980)



What About Adding Quadratic Terms?

ESNAP = 13 • Bi (Bi)T • a • Bi

• Linear terms are 4-body
• Quadratic terms are 7-body
• Number of linear coefficients grows as 0(J3)
• Number of quadratic coefficients grows as = O(J6)
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• Energy, force, stress remain linear in fland a
• Can still use linear least squares (SVD)
• Number of columns will increase from K to K(K+1)12

Wood and Thompson, J. Chem.Phys., March, 2018
Also https://arxiv.org/abs/1711.11131
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Quadratic SNAP Cross Validation

• Concerned with overfitting now that there are MANY
more free parameters during the fit.

• (Training Points) : (Descriptors) still >> 1 for
assembled training sets

10 2

Linear, Training Error
Linear, Prediction Error

Quadratic, Training Error
Quadratic, Prediction Error

0 5 10 15 20
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25
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• •
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Linear, Training Error 1-6-I
Linear, Prediction Error 1-e-I

Quadratic, Training Error
Quadratic, Prediction Error 1-9-1

0 200 400 600 800 1000 1200 1400 1600

Number of Training Points Included
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Conclusions

• Molecular dynamics is a powerful tool for exploring materials behavior

• Can access physics, chemistry, length, and timescale that is inaccessible to
other methods (continuum, quantum)

• Applications are driving demand potentials of greater accuracy

• We have built a system for converting large amounts of quantum
calculations into SNAP potentials for large-scale MD simulations of complex
materials

• SNAP strikes a good balance between speed, accuracy, and robustness

• We still don't really understand why ML potentials work or don't work

• Still lots of room for improvement
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