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Bulk Tellurium

• 1D helical chains of Te atoms staked together on 2D
hexagonal plane

• Covalent bond between neighboring atoms in the same chain
• van der Waals type bond between neighboring atoms across

the chain

(c) 3
o

1.5-

..... 11.••••1

,'°

k.riJrY 

1

-3.0  k 
G A

Bulk

Gap: 0.3 _g_eV

.1

••:
I •

• ...

L A

J. Qiao et al. Science Bulletin 63 (2018) 159-168

(a)

"
Eir".1

a-axis firs-s-e,":1-S a-axis

111
 Te exhibits high thermoelectric

performance in bulk
Several Te based compounds are
excellent thermoelectric material
e.g. PbTe
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Layered Structure of Tellurium
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• Unique crystal structure allows to synthesize Te in 1D and 2D form

• 2D tellurium is equivalent to transition metal dichalchogenides of formula

MX2 (e.g. MoS2) where M is replaced by Te. _AL AL Ain

Prediction*: 2D structure of Te (Tellurane) exists in 3 phases: a-, /3-, and y-Te
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Bottom-up and Top Down Synthesis of Te Nanostructur

G. Zhou, Adv Mater, (2018). Q. Wang, J. Phys. Chern, (2007).

MBE deposited nanostructures Vapor phase deposition at 100°C

J. M. Song„ Cryst Growth, (2008).

Solvothermal synthesis using Te02

H. O. H. Churchill, Nanoscale Res Lett , (2017).

Exfoliation

Y. Wang, Nature Electronics ,1 (4), 228-236 (2018).

Solution based synthesis using Na2Te03

X position (pm)
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High Temperature Synthesis of Ultrathin Te Nanost

Challenges to synthesize high quality Te nanostructures by conventional methods
• Solution based method usually contaminates the nanostructures by chemical byproducts
• Low temperature MBE/ Vapor phase deposition is susceptible to crystal defects and low quality growth

High temperature vapor phase deposition is the desired method to produce high quality Te nanostructures
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Major Challenge
Te has high vapor pressure/evaporation rate:
difficult to control Te deposition and re-
evaporation at high substrate temperature

Attempts to grow high temperature Te nanostructures
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High Temperature Synthesis of Ultrathin Te Nanostructu

Overcoming challenges

ZrTe2 powder as the Tellurium source

ZrTe2 decomposes slowly at > 450 °C into crystalline Zr and Te gas*

ZrTe2(cr) = Zr(cr, Te2(g),

*G.K. Johnson, 17 (1985)

Crystalline Zr evaporate only above 1500 °C

Slow decomposition of ZrTe2 controls the Te vapor

pressure at high temperature and containment of Te

evaporation by covering with substrate successfully

grew Te nanostructures at > 600 °C . V
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Te nanostructures thickness: down to 3 nm

Width and length: few hundred nm and few pm
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Structural Characterizations

Source material ZrTe2 4 Are these nanostructures pure Te?

• Te nanostructures are studied under STEM

• Electron Dispersive X-ray studies could not

reveal any presence of Zr on the

nanostructures to the detection limit of

instrument

• Nanostructures are pure 1

Cross-sectional STEM image of Te Nanowire
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Structural Characterizations

HAADF and FFT : Te crystal structure matches with a — Te phase

• High-angle annular dark-field (HAADF) STEM image

exhibits helical chains of Te

• Trigonal crystal structure with hexagonal cell
• Space group P3121

• Lattice parameters: a = 4.458 A, and c = 5.927 A

Te nanowire High-angle annular dark-field (HAADF) STEM image

FFT analysis

D-spacing

Miller index Expected (A) Measured (A) Difference (%)

0,1,0 3.856 3.83 -0.67

0,1,1 3.233 3.2 -1.02

0,-1,2 2.35 2.32 -1.28

0,0,3 1.975 1.94 -1.77
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Electrical Properties of a Te Nanostructure

r

Device fabrication and measurement

• Challenging to fabricate gated device on the growth substrate (sapphire)
• Nanostructures were transferred to Si/Si02 substrate by contact method
• Electron beam lithography was carried out to fabricate the single nanostructure devices
• In-situ ion milling at the contact region before metallization to improve contacts
• Nanowire channel length = 830 nm and width = 180 nm, thickness = 21 nm
• I-V characteristics is linear at room temperature 4 no Schottky barrier observed
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Electrical Properties of a Te Nanostructure

Resistivity (p) = 645 pn.cm.

• Nearly two order of magnitude lower than the resistivity of bulk-Te

• Significantly lower than solution-based synthesized Te nanostructures

Gated measurements at room temperature

• Negative transconductance (gm): p-type semiconductor

gmL2
= d Id/c117,0 = u r Cget = E0ErW L/t

vdsuget

• Hole mobility (Rd= 349 cm2/V.s

• Mobility higher than of MoS2 which is typically —190 cm2/V.5 (L. Ma, APL105 (7) (2014))

(a)

a>

nh = l/e Nth
• Hole concentration (nh) = 2.78 x 1018 cm-3

-10

-15  

-0.4

4-H

*H. Peng, PRB 89 (19) (2014)

H-K

-0.04 0.00

k, (27/c)

0.0z

150-
= 2 mV

gm = -0.53 nS

Vd = 1 mV

gm = -0 26 nS

Linear Fit

0 ,
-20 -10 1 1 1 110 20 30 40

V (V)

Hole Transport Mechanism*
• Unique valence band structure at the H point in

the Brillouin zone provides conduction channels
for the holes

• The four fold degenerate valance band at H point is
split into two non-degenerated H4 and H5 bands
and a doubly degenerated lower H6 band due to
the strong spin-orbit coupling in the Te.

• Only H4 and H5 bands lie close to the Fermi level
and thus contribute holes transport.

Keshab R Sapkota APS March Meeting, 2019



Micro-PL study

• Room-temperature micro- photoluminescence (micro-PL) measurements

show a strong violet-blue luminescence at N 445 nm

• PL peak lies at a significantly higher energy level than the expected bandgap

level.
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• Peaks in the energy range of 0-3 eV can be assigned to the transition form valence band p-bonding (VB3) to

conduction band p-antibonding (CB1).*

*T lkari, Mater. Res. Bull. 21, 99 (1986)
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Conclusions

• Te can be synthesized in 2D form which can exists in 3 phases: a-, /3-, and y-Te

• 2D Te is equivalent to transition metal dichalchogenides of formula MX2 (e.g. MoS2) where M is replaced by Te

• High temperature vapor phase deposition of Te nanostructures was realized by using ZrTe2 as Te source

• Ultrathin nanostructures were obtained down to 3 nm thickness

• The synthesized Te nanostructures exhibited a — Te phase

• The high quality Te nanostructures exhibited 2 order lower resistivity that than of bulk Te and chemically synthesized

Te nanostructures

• High hole mobility was observed (349 cm2/V.$) which is greater than for typical 2D van der Waal materials

• Micro-PL exhibits luminescence at — 445 nm which is significantly deeper energy level than expected bandgap
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