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Motivation and Introduction

• Sea-level change is one of the most impactful consequences of climate change
• Greenland and Antarctica ice sheet are major contributors to the sea level*
• Global mean sea-level is rising at the rate of 3.2 mm/yr and the rate is increasing.

• Latest studies suggest possible increase of 0.3 — 2.5m by 2100
• Accurate probabilistic projections of sea level would be extremely useful to policy makers

Map with 6 meters sea-level rise in red (NASA).
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Motivation and Introduction
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• Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. Source:
snow packing/water freezing. Sink: ice melting / calving in ocean.

• There are several unknown or poorly known parmeters (e.g. basal friction, bed topography,rehogy)
• Simulating Ice sheet dynamics requires the solution of complex large scale computational models

of Greenland and ice sheet

Perito Moreno glacier

from http://www.climate.be



Uncertainty Quantification challenge

The total mass change of ice sheets is a proxy for the sea-level
change and it is our Quantity of Interest (Qol) .
Despite the considered Quantity of Interest (Qol) is a scalar
quantity, its computation requires the solution of complex
multi-physics systems of partial differential equations,
characterized by hundreds of million of unknowns and a large

number of parameters

Accurate UQ analysis of Greenland and Antarctic ice sheets at
high resolution is currently unfeasible due to the high-
dimensional parameter space (curse of dimensionality) and the
cost of running the physical model

Parameters:

basal friction
geothermal flux
precipitations

Expensive Computational
model

Complex system of PDEs
0(108) unknowns
0(104) time-steps
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mass change



Uncertainty Quantification, NN surrogates

Possible strategy: model reduction in multifidelity* framework

Parameters:
basal friction

geothermal flux
precipitations

Inexpensive
surrogate model

scalar Qol:
ice sheets total
mass change

(Surrogate model is evaluated more often than the physical model to
reduce costs while maintaining accuracy)

issue: classic approaches like PCE are still too expensive especially

in presence of nonlinear maps with interconnected parameter

dimensions.

idea: create surrogate models using Neural Networks (NN)

trained by model output at different time instants

* Peherstorfer, Willcox and Gunzburger, Survey of multifidelity methods in

uncertainty propagation, inference, and optimization, SIAM Review, 2018
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Problem setting and methods

Problem setting:

• Ice sheet model: Shallow ice Approximation

ht - V • (pt(h, f3) Vh) = f

• Qol: total mass change in time

• Parameters: basal friction /3, represented as a Karhunen—

Loève Expansion (KLE) based on 20/100/500 independent

uniformly distributed parameters:
n co

log(Ax, co)) = log( flo(x)) + 6 Vilk (I) k (x) c() k
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A.k,0k are the eigenvalues and eigenvectors of C = exp(ixi—x21)

• Forcinq: ice accumulation/melt, sinusoidal in space/time

• Training set: 900 samples of N time instants

• Testing set: 100 sampls of N time instants
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Ice sheet evolutions for different parameter samples ffl[lab:FaOries

Ice sheet evolution for different samplings of ig (20 parameters case).
Time instants [yr]: 0,50,100,...,500.



Recurrent Neural Network (RNN) surrogates

Wx Wx
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Weights Wx, Wo and WI are

shared by all units.

Wx
 ►

Why RNNs?

1. RNNs have been effectively used to model dynamical systems*, and can provide prediction of the

Qol at different time instants, whereas PCE would only provide the Qol at a given instant

2. Because different networks units share the same parameters, RNNs are relatively fast to train,

especially given the low dimensionality of the Qol

Implementation:

• Long-Short Term Memory (LSTM) networks** as implemented in Keras (built on top of TensorFlow)

• To better exploit the time dimension, we perform windowink (whether to split the temporal data in

chunks of consecutive samples).

* Pathak, Hunt, Girvan and Ott, Model-free prediction of large spatiotemporally chaotic systems from data:
A reservoir computing approach. Phys. Rev. Lett., 120, 2018
** S. Hochreiter, J. Schmidhuber, "Long short-term memory". Neural Computation. 9 (8): 1735-1780, 1997.



Recurrent Neural Network (RNN) surrogates

Wx

Results:

Relative errors as a function of time
for different hyper-parameters

Left: window of size 10 [yr], 100 parameters
Right: no window, 20 parameters

Most of networks have a relative error that is above
50%, which is insufficient for performing UQ

Simulations by W. Severa
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Non recurrent approaches: MLP, ResNet, PCE

Multi-Layers Perceptron (MLP)

t5 0

tloo

t150

softplus linear :
turn()
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Residual Network (ResNet)

Polynomial Chaos Expansions (PCE)
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Results: comparing MLP, ResNet and PCE
relative error for 20 parameter s
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4, 30

Comparison of relative errors of MLP, ResNet and PCE surrogates, for 20 (left), 100 (center) and 500

(right) parameters.

Details:
• MLP: Keras, single hidden layer of width 50, opt scheme: Adadelta, dropout: 0.3

• ResNet*: Matlab code by L. Ruthotto, 4 hidden layers of width 8, stepping scheme: RK4

• PCE*: python code by J. Jakeman, polynomial degree: 2/2/1, for 20/100/500 params

*E. Haber, L. Ruthotto, Stable architecturs for deep neural networks, Inverse Problems, 2017
** J.D. Jakeman et al., Enhancing 11-minimization estimates of polynomial chaos expansions, JCP, 2015
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Conclusions
(is the glass half empty or half full?)
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• the LSTM seem to lack the capability of capturing the global behavior of a dynamical system. They
are also much more expensive than the other approach tried (ResNet, MLP, PCE)

• Compared to approaches like PCE, NNs have many more "knobs" (hyper-parameters) that are
hard to tune for a specific application to get good performance

• We were able to devise MLP networks and Residual networks that were comparable to PCEs in
term of accuracy

• Further directions include using NN to approximate the ice elevation at each time step, rather
than the Qol and enforce mass conservation constrains

More general considerations:

• Can we do drastically better than PCE?

• Is the parameter to prediction map intrinsically high-dimensional?


