This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.
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Motivation and Introduction i) Natona

* Sea-level change is one of the most impactful consequences of climate change

* Greenland and Antarctica ice sheet are major contributors to the sea level*

* Global mean sea-level is rising at the rate of 3.2 mm/yr and the rate is increasing.

* Latest studies suggest possible increase of 0.3 —2.5m by 2100

* Accurate probabilistic projections of sea level would be extremely useful to policy makers

Map with 6 meters sea-level rise in red (NASA). total mass loss of ice sheets in
' 1992-2011 (sheperd et al. 2012)
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*DOE SciDAC project ProSPect (Probabilistic Sea Level Projection from Ice Sheet and Earth System Models),
Institutes: LANL, LBNL, SNL, ONL, NYU, UM
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Motivation and Introduction

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) driven by gravity. Source:

snow packing/water freezing. Sink: ice melting / calving in ocean.
* There are several unknown or poorly known parmeters (e.g. basal friction, bed topography,rehogy)

* Simulating Ice sheet dynamics requires the solution of complex large scale computational models
of Greenland and ice sheet

Perito Moreno glacier

Bedrock

from http://www.climate.be
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Uncertainty Quantification challenge ) joues,

The total mass change of ice sheets is a proxy for the sea-level
change and it is our Quantity of Interest (Qol) .

Despite the considered Quantity of Interest (Qol) is a scalar
guantity, its computation requires the solution of complex
multi-physics systems of partial differential equations,
characterized by hundreds of million of unknowns and a large
number of parameters

Accurate UQ analysis of Greenland and Antarctic ice sheets at
high resolution is currently unfeasible due to the high-
dimensional parameter space (curse of dimensionality) and the
cost of running the physical model

Parameters: Expensive Computational

basal friction model _ scalar Qol:
geothermal flux Complex system of PDEs ice sheets total

precipitations O(108) unknowns mass change

0(104) time-steps
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Uncertainty Quantification, NN surrogates L

Possible strategy: model reduction in multifidelity* framework

Parameters:
basal friction Inexpensive

scalar Qol:
ice sheets total

geothermal flux surrogate model mass change

precipitations

(Surrogate model is evaluated more often than the physical model to
reduce costs while maintaining accuracy)

Issue: classic approaches like PCE are still too expensive especially
in presence of nonlinear maps with interconnected parameter
dimensions.

Idea: create surrogate models using Neural Networks (NN)
trained by model output at different time instants

* Peherstorfer, Willcox and Gunzburger, Survey of multifidelity methods in
uncertainty propagation, inference, and optimization, SIAM Review, 2018

surrogate needs to



Problem setting and methods ) &

Problem setting:
* |ce sheet model: Shallow Ice Approximation

he =V -(uh,p) Vh) = f

* Qol: total mass change in time

Parameters: basal friction 3, represented as a Karhunen—

Loéve Expansion (KLE) based on 20/100/500 independent
uniformly distributed parameters:

log(Bx, @) = log( o) + 0 ) Ak $i(@)
k=1

0.7 A I e ™ — b
7 \\ == h,t=0yr
/ \ -+« h, t=1000 yr
0.6 1 F \ y
F \
' \
0.5 \

elevation [km]

Ak, @y are the eigenvalues and eigenvectors of C = exp (_|x1;x2|)

Forcing: ice accumulation/melt, sinusoidal in space/time

Training set: 900 samples of N time instants
e Testing set: 100 sampls of N time instants

_
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Ice sheet evolutions for different parameter samples

Qol: 4.44

Qol: -1.06

|lce sheet evolution for different samplings of § (20 parameters case).
Time instants [yr]: 0,50,100,...,500.
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Qol: 3.49

Qol: 0.90
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Recurrent Neural Network (RNN) surrogates h lﬁaﬁ'ﬂt'

Weights W,, Wyand W, are
shared by all units.

Why RNNs?

1. RNNs have been effectively used to model dynamical systems*, and can provide prediction of the
Qol at different time instants, whereas PCE would only provide the Qol at a given instant

2. Because different networks units share the same parameters, RNNs are relatively fast to train,
especially given the low dimensionality of the Qol

Implementation:

* Long-Short Term Memory (LSTM) networks** as implemented in Keras (built on top of TensorFlow)

* To better exploit the time dimension, we perform windowing (whether to split the temporal data in
chunks of consecutive samples).

* Pathak, Hunt, Girvan and Ott, Model-free prediction of large spatiotemporally chaotic systems from data:
A reservoir computing approach. Phys. Rev. Lett., 120, 2018
**S. Hochreiter, J. Schmidhuber, "Long short-term memory". Neural Computation. 9 (8): 1735-1780, 1997.
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Recurrent Neural Network (RNN) surrogates h Lﬁaﬁ'dt'es

Weights W,, Wyand W, are
shared by all units.

Results: |Qoly, — Qoly, |y,

relative error: ¢;

max |Qol i,

LSTM, 20 parameters, no window LSTM, 100 parameters, window size = 10

Relative errors as a function of time

for different hyper-parameters

Left: window of size 10 [yr], 100 parameters
Right: no window, 20 parameters

\

Most of networks have a relative error that is above
50%, which is insufficient for performing UQ

_ rel. error

Simulations by W. Severa

250 . aéc 5(‘]0 !QIGG 4'(‘,:) 600
time [yr time [yr




Sandia

Non recurrent approaches: MLP, ResNet, PCE iy Natona

Laboratories

Multi-Layers Perceptron (MLP) Residual Network (ResNet)




Results: comparing MLP, ResNet and PCE ) e

relative error for 20 parameters relative error for 100 parameters relative error for 500 parameters
1 1
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MLP

MLP
= MLP w/ dropout | = MLP w/ dropout

MLP

= MLP w/ dropout

= MLP w/ noise = MLP w/ noise = MLP w/ noise
ResNet ResNet ResNet
= PCE - PCE - PCE

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Comparison of relative errors of MLP, ResNet and PCE surrogates, for 20 (left), 100 (center) and 500
(right) parameters.

Details:

* MLP: Keras, single hidden layer of width 50, opt scheme: Adadelta, dropout: 0.3

* ResNet*: Matlab code by L. Ruthotto, 4 hidden layers of width 8, stepping scheme: RK4
* PCE*: python code by J. Jakeman, polynomial degree: 2/2/1, for 20/100/500 params

*E. Haber, L. Ruthotto, Stable architecturs for deep neural networks, Inverse Problems, 2017

** ).D. Jakeman et al., Enhancing |1-minimization estimates of polynomial chaos expansions, JCP, 2015
————
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(is the glass half empty or half full?)

* the LSTM seem to lack the capability of capturing the global behavior of a dynamical system. They
are also much more expensive than the other approach tried (ResNet, MLP, PCE)

* Compared to approaches like PCE, NNs have many more “knobs” (hyper-parameters) that are
hard to tune for a specific application to get good performance

* We were able to devise MLP networks and Residual networks that were comparable to PCEs in
term of accuracy

* Further directions include using NN to approximate the ice elevation at each time step, rather
than the Qol and enforce mass conservation constrains

More general considerations:

* Can we do drastically better than PCE?

* Is the parameter to prediction map intrinsically high-dimensional?
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