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2 Background

STM Lithography can produce atomically precise, 2D layers with extremely
high doping (1.7e14 cm-2) in Si

Potential use in fabricating a variety of electrical devices

Very high doping -> does not act like normal Si!

Requires relatively low fabrication temperatures -> tricky fabrication

Currently making test structures, including tunnel junctions, to better
understand fabrication and 6-layer properties

Investigating:
Simple models for transport
Effects of impurities



3 STM lithography and 6-layers

Technique pioneered by Lyding and Simmons, now
also done at Sandia and NIST

STM lithography gated tunnel junction shown

Fast fabrication facts
Uses hydrogen attached to Si substrate as a mask

P attached to -1/4 of unmasked Si (-1.7e14 P
atoms/cm-2)

30 nm of epitaxial Si grown on top

P confined to few-monolayer-thick "6-layer"

J. W. Lyding et al., Appl. Phys. Lett., 64, 2010 (1994).
T. Hallam et al., J. Appl. Phys., 102, 034308 (2007).
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4 Mysterious properties of phosphorus 6-doped silicon

Not bulk Si band structure!

Hard to measure band structure of buried,
disordered alloy

Table: predicted band minima and Fermi
level for quarter-layer doped 6-layer
sheets (meV below Si conduction-band
minimum)

No consensus!

1. D. J. Carter et al., Nanotechnology, 22, 065701 (2011).
2. D. W. Drumm et al., Nanoscale Res. Lett., 8, 111 (2013).
3. H. Ryu et al., Nanoscale, 5, 8666 (2013). S. Lee et al.,

Phys. Rev. B, 84, 205309 (2011).
4. G. Qian et al, Phys. Rev. B, 71, 045309 (2005).
5. J. S. Smith et al., Phys. Rev. B, 89, 035306 (2014).
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5 Our tunnel junctions

Useful for testing fabrication and
models

Can be made with or without
inplane or top gate

Consider 35-nm-wide wire with a 15-
nm-wide gap

Effective mass theory for electrons



6 One-dimensional model: band structure revealed?

Trapezoidal barrier from linear voltage drop and
band offsets

Calculate transmission/currents for all bands

I-V curves for all parameters in Table as well as
experimental data (dotted). 78 k0 resistance in
series

Takeaways:
Even simple model produces reasonable results
Band structure matters

Does this mean we now know the band structure?

A. Shirkhorshidian et al., Phys. Rev. Appl., 10, 044003 (2018).
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7 Stray charges

Unfortunately, devices have defects

Concerned with stray charges in Si grown above 6-layer

Need model that can handle real electrostatics, including randomly located
stray charges near the junction

.

.



8 Two-dimensional model with electrostatics

Treat 6-doped regions as perfect conductors,
partially screen stray charges

Electrostatics with boundary element method

Kwant package to calculate transmission

78 k0 resistance and band structure from [1]

Can also include gates
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9 Stray charges as spoilers

Considered negative and positive stray charges with varying densities (in cm-3)

10 runs for each stray charge density

Main effect: turn on voltage (similar magnitude to band structure choice)

Some effect on variability
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10 Conclusions

Simple models are promising way to understand 6-doped devices

Stray charges have effects comparable to band structure choice

Imperfections in geometry also important

Several good junctions could nail down the band structure
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11 Effect of gate

2D model can handle more complicated devices

Example of inplane gate

Model predicts gate more effective than seen in experiment I

Unclear why. Reproducibility issues with our devices.
Theory Experiment
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