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, | Background

*STM Lithography can produce atomically precise, 2D layers with extremely
high doping (1.7e14 cm) in Si

‘Potential use in fabricating a variety of electrical devices
*Very high doping -> does not act like normal Si!
‘Requires relatively low fabrication temperatures -> tricky fabrication

*Currently making test structures, including tunnel junctions, to better
understand fabrication and 0-layer properties

*Investigating:
» Simple models for transport
 Effects of impurities



s | STM lithography and 6-layers

*Technique pioneered by Lyding and Simmons, now
also done at Sandia and NIST

*STM lithography gated tunnel junction shown

*Fast fabrication facts
 Uses hydrogen attached to Si substrate as a mask

P attached to ~1/4 of unmasked Si (-1.7e14 P
atoms/cm-2)

* 30 nm of epitaxial Si grown on top

P confined to few-monolayer-thick “o-layer”

Si epi

J. W. Lyding et al., Appl. Phys. Lett., 64, 2010 (1994). Si substrate

T. Hallam et al., J. Appl. Phys., 102, 034308 (2007).
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+ | Mysterious properties of phosphorus 6-doped silicon

*Not bulk Si band structure!

*Hard to measure band structure of buried,
disordered alloy

*Table: predicted band minima and Fermi
level for quarter-layer doped d-layer
sheets (meV below Si conduction-band
minimum)

*No consensus!

. D. J. Carter et al., Nanotechnology, 22, 065701 (2011).

. D. W. Drumm et al., Nanoscale Res. Lett., 8, 111 (2013).
. H. Ryu et al., Nanoscale, 5, 8666 (2013). S. Lee et al.,
Phys. Rev. B, 84, 205309 (2011).

. G. Qian et al, Phys. Rev. B, 71, 045309 (2005).

. J. S. Smith et al., Phys. Rev. B, 89, 035306 (2014).
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s 1 Our tunnel junctions
‘Useful for testing fabrication and
models

*Can be made with or without
inplane or top gate

*Consider 35-nm-wide wire with a 15-
nm-wide gap

‘Effective mass theory for electrons




One-dimensional model: band structure revealed?

*Trapezoidal barrier from linear voltage drop and
band offsets

*Calculate transmission/currents for all bands

°|-V curves for all parameters in Table as well as
experimental data (dotted). 78 kQ) resistance in
series

‘Takeaways:
* Even simple model produces reasonable results
* Band structure matters

*Does this mean we now know the band structure®

A. Shirkhorshidian et al., Phys. Rev. Appl., 10, 044003 (2018).
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; | Stray charges

‘Unfortunately, devices have defects
*Concerned with stray charges in Si grown above 0-layer

‘Need model that can handle real electrostatics, including randomly located
stray charges near the junction
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s | Two-dimensional model with electrostatics

*Treat 0-doped regions as perfect conductors,
partially screen stray charges

Electrostatics with boundary element method
‘Kwant package to calculate transmission
78 kQ resistance and band structure from [1]

*Can also include gates
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s | Stray charges as spoilers

-Considered negative and positive stray charges with varying densities (in cm3)
10 runs for each stray charge density
*Main effect: turn on voltage (similar magnitude to band structure choice)

‘Some effect on variability
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o | Conclusions

-Simple models are promising way to understand 0-doped devices
Stray charges have effects comparable to band structure choice
‘Imperfections in geometry also important

*Several good junctions could nail down the band structure
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1 | Effect of gate

2D model can handle more complicated devices
‘Example of inplane gate
‘Model predicts gate more effective than seen in experiment

‘Unclear why. Reproducibility issues with our devices.
Theory Experiment




